

Cyber-Physical Systems Software Development
way of working and tool suite

M.M. Bezemer

Faculty of Electrical Engineering Mathematics and
Computer Science, University of Twente

Robotics and Mechatronics group

CTIT
CTIT Ph.D. Thesis Series No. 13-276
Centre for Telematics and Information Technology
P.O. Box 217, 7500 AE
Enschede, The Netherlands.

The research has been conducted as part of the Tele-
FLEX project, funded by the Dutch Ministry of Eco-
nomic Affairs and the Province of Overijssel, within
the Pieken in de Delta (PIDON) initiative.

Title: Cyber-Physical Systems Software Development
way of working and tool suite

Author: M.M. Bezemer
ISBN: 978-90-365-1879-6
ISSN: 1381-3617 (CTIT Ph.D. Thesis Series No. 13-276)
DOI: 10.3990/1.9789036518796

Cover design by Marieke Bezemer-Krijnen.

Copyright © 2013 by M.M. Bezemer, Enschede, The Netherlands.

All rights reserved. No part of this publication may be reproduced by print, photocopy
or any other means without the prior written permission from the copyright owner.

Printed by Wöhrmann Print Service, Zutphen, The Netherlands

CYBER-PHYSICAL SYSTEMS SOFTWARE DEVELOPMENT

WAY OF WORKING AND TOOL SUITE

PROEFSCHRIFT

ter verkrijging van

de graad van doctor aan de Universiteit Twente,

op gezag van de rector magnificus,

prof.dr. H. Brinksma,

volgens besluit van het College voor Promoties

in het openbaar te verdedigen

op donderdag 14 november 2013 om 14.45 uur

door

Maarten Matthijs Bezemer

geboren op 17 augustus 1982

te Eindhoven

Dit proefschrift is goedgekeurd door:

prof.dr.ir. S. Stramigioli, promotor
dr.ir. J.F. Broenink, assistent promotor

Graduation committee

Chairman and Secretary
prof.dr.ir. A.J. Mouthaan University of Twente

Supervisor
prof.dr.ir. S. Stramigioli University of Twente

Assistant Supervisor
dr.ir. J.F. Broenink University of Twente

Members
prof.dr.ir. H. Bruyninckx KU Leuven
prof.dr.ir. J.J.M. Hooman Radbout University Nijmegen
prof.dr.ir. M. Aksit University of Twente
prof.dr.ir. G.J.M. Smit University of Twente

Summary

Designing embedded software for modern cyber-physical systems becomes more and
more difficult, because of the increasing amount of requirements, which are also in-
creasing in their complexity. An example of increasing complexity of the requirements
is the demand to get a general-purpose cyber-physical system capable of fulfilling a
variety of different, ad-hoc tasks or to be suitable in environments with lots of human
interactions. A typical example of modern cyber-physical systems, which have these
modern requirements, are medical robotic systems used in surgeries.

The essential goal of this research is to provide a way of working for the design of
the control software for cyber-physical systems, and thereby providing a solution of
the problem of the increasing complexity of the control software due to the modern
requirements described above. The way of working makes use of model-driven design
(MDD) techniques to reduce the complexity of the control software design.

First the models are designed, both the software architecture and the control al-
gorithms. These are combined into the actual control software implementation. Next,
the model needs to be verified and simulated to test whether it is behaving as inten-
ded.

Ultimately, these steps result in a first-time-right implementation. A more realistic
result of these steps is to provide means to get as close as possible to such a first-time-
right implementation. Careful design and tests, that are stimulated by these steps,
help in preventing damaging the system or its environment due to software problems
and result in a higher software quality and reusability.

The way of working is supported by additional elements, which have been developed
as part this research. The software architecture model basically is a network of com-
ponents, which all have the same basic functionality. This basic functionality is
provided by a blue-print, called Generic Architecture Component (GAC).

The basic implementation of the GAC consists of 4 blocks: Coordination, Computa-
tion, Configuration and Safety. These blocks provide the basic behaviour of the GAC,
like connectivity to other GACs, a simple component life-cycle and checking signal
values for errors. Each block has one or more placeholders, called hooks, to imple-
ment the behaviour of the actual component that makes use of the GAC.

LUNA Universal Network Architecture (LUNA) is an execution framework to execute
the produced models that result from the way of working. A hardware abstraction layer
is available to provide a basis for the execution engine which is platform independent,
separating the platform-support code and the execution engine.

The framework consists of multiple components. Each of these components can be
enabled or disabled, depending on the requirements of the application that is using
the framework. This makes the framework suitable for low resource, embedded sys-
tems, as all unused components can be disabled to keep the resource usage as low
as possible. On the other hand complex applications, for example to steer medical

vii

viii Cyber-Physical Systems Software Development

robotic systems, are also supported by the framework, as it also has components to
perform complex tasks, like model execution.

The Twente Embedded Real-time Robotic Application (TERRA) is an MDD tool suite,
which supports the way of working. Its tools range from editors to graphically design
the models to code generation tools to convert the models into source code.

Models are central in the TERRA tool suite. All structures of the TERRA models are
defined by meta-models. These meta-models defined all model elements and their
usage. The TERRA tools make use of these defined structures to properly make use of
the models and to interpret them correctly.

Like the way of working, the GAC and LUNA, TERRA is also modular. It is a collection
of separate components providing meta-models, editors, code generation tools, and
so on. This results in means to easily add a new components to include new function-
ality. The editors for example provide so-called extension points to add new model
elements to support for example C++ code blocks in a model.

In the end, it is concluded that the proposed way of working provides design steps
for the complete design trajectory, starting at the initial designs up-to and including
the deployment of the control software on the target system. It is also concluded that
the GAC tightly matches the way of working and increases its value and usability. The
execution framework and the tool-suite further increase the usability of the way of
working by adding graphical model-driven design support to the way of working, with
e.g. model validation and code generation. This all increases the understanding of the
complex models and thus decreasing the complexity of the control software design.

It is recommended to further evaluate the way of working, by using it to implement
different control applications to steer all kinds of different cyber-physical systems.
This likely results in adaptations of the way of working, making it more generic and
suitable for a broader range of applications. Including model management is recom-
mended to increase the reusability of the modelled components and to provide sets of
components for a specific goal. Simulator should be added to TERRA to let it further
support the way of working and to increase the probability of first-time-right imple-
mentations.

Contents

1 Introduction 1

1.1 Context . 1

1.2 Cyber-Physical System Overview . 2

1.3 Objectives . 4

1.3.1 Design Space Exploration . 5

1.3.2 Scalability . 5

1.3.3 First Time Right . 5

1.4 Approach . 6

1.5 Outline . 7

2 Terminology and Technologies 9

2.1 Real-Time Guarantees . 9

2.2 Safety . 11

2.3 Model-Driven Development . 12

2.4 Meta-Models . 14

2.5 Component Port Connection . 15

2.6 Communicating Sequential Processes . 16

2.7 Model Transformations . 18

2.8 Co-Simulation . 18

2.9 Deployment . 20

2.10 Software Frameworks . 20

3 Design Approach for Embedded Control Software 23

3.1 Way of Working . 23

3.1.1 Software Architecture Modelling 26

3.1.2 Software Testing . 27

3.1.3 Software Deployment . 29

3.2 Tool Coverage . 30

3.2.1 Graphical Modelling . 31

3.2.2 Code Generation . 32

3.2.3 Model-to-Model Transformations 33

ix

x Cyber-Physical Systems Software Development

3.2.4 Co-Simulation . 34

3.3 Generic Architecture Components . 34

3.4 Execution Framework . 35

3.5 Conclusions . 36

4 Generic Architecture Component 37

4.1 Requirements . 38

4.2 Existing Component Models . 40

4.2.1 BRICS Component Model . 40

4.2.2 Orocos . 40

4.2.3 ROS . 41

4.2.4 Conclusion . 42

4.3 Design . 42

4.3.1 Separation of Concerns . 43

4.3.2 Computation . 44

4.3.3 Coordination . 44

4.3.4 Configuration . 46

4.3.5 Communication . 46

4.3.6 Composition . 46

4.3.7 Safety . 48

4.3.8 Discussion . 48

4.4 Implementation . 49

4.5 Usage of the Generic Architecture Component 51

4.5.1 PCU GAC Design Considerations 53

4.5.2 Production Cell Architecture Implementation 56

4.6 Discussion and Conclusions . 58

5 LUNA Universal Network Architecture 61

5.1 Requirements . 62

5.2 Existing Solutions . 63

5.3 LUNA Architecture . 64

5.3.1 Threading Implementation . 66

5.3.2 LUNA CSP . 68

5.3.3 Channels . 71

5.3.4 Alternative . 73

CONTENTS xi

5.4 Results . 77

5.4.1 Context-Switch Speed . 77

5.4.2 Commstime Benchmark . 79

5.4.3 Cyber-Physical System Use Case 81

5.5 Conclusions . 83

6 Twente Embedded Real-time Robotic Application 85

6.1 Related Work . 85

6.1.1 Meta-Models . 86

6.1.2 Tooling . 87

6.2 Meta-Model Usage . 87

6.3 Meta-Model Implementation . 89

6.3.1 CPC Meta-Model . 89

6.3.2 CSP Meta-Model . 92

6.3.3 Architecture Meta-Model . 94

6.3.4 Other Meta-Models . 95

6.4 Graphical Model Editor . 95

6.4.1 20-sim Editor Integration . 96

6.5 Model Validation . 97

6.6 Model Transformations . 98

6.6.1 Model-to-Text Transformation . 98

6.6.2 Model-to-Model Transformation 99

6.7 (Co-)Simulation . 100

6.8 Evaluation . 101

6.8.1 Usage of TERRA . 101

6.8.2 Discussion . 102

6.9 Conclusions . 103

7 Conclusions and Recommendations 105

7.1 Conclusions and Evaluation . 105

7.1.1 Way of Working . 105

7.1.2 Generic Architecture Component 106

7.1.3 Framework and Tooling . 107

7.1.4 Relevance . 108

7.2 Recommendations . 108

xii Cyber-Physical Systems Software Development

7.2.1 More Evaluation . 108

7.2.2 Model Management . 109

7.2.3 Model Optimisation . 109

7.2.4 Simulation Support . 109

Bibliography 113

Index 119

1
Introduction

1.1 Context

Designing control software for modern cyber-physical systems becomes more and
more difficult because of the increasing amount and complexity of their requirements,
as stated in the RoboNED roadmap on robotics (Kranenburg-de Lange, 2012). The
mechanical designs of the physical parts of the systems are becoming more and more
complex. As a result the systems have a growing amount of sensors and actuators,
which are needed by the control software to provide the desired behaviour of the sys-
tem. For general purpose systems, the flexibility and complexity of their behavioural
tasks also increase to make the system suitable for as many situations as possible. Even
though the complexity keeps increasing, the systems need to become more and more
safe. The increasing need of safety arises due to the increasing interaction with hu-
mans and other cyber-physical systems. On top of this, the cyber-physical systems
also tend to become more mobile, and therefore need to be as energy efficient as pos-
sible.

In contrast with these quality-related requirements, like safety, robustness and energy
efficiency, the companies that develop and produce the cyber-physical systems have a
time-to-market requirement. They rather do not spend too much time on the quality
requirements, as this will slow down the design process and thus the postpone the
availability of their product on the market. This is disadvantageous for a company
when there are competitors developing a similar product or just because the product
revenue is delayed as well.

A typical example of modern cyber-physical systems, that have the requirements men-
tioned above, are medical robotic systems. Traditional medical systems are well es-
tablished in hospitals already, for example in the form of imaging systems like MRI or
ultra-sonic scanners. Besides these traditional systems, a new type of robotic systems
is being introduced into hospitals. These new systems have more and intense interac-
tion with the people in hospitals, both staff and patients. Examples are robotic systems
that help raising patients out of or into their beds, automated carts transporting food
or laundry around the hospital, or even robotic systems that are directly involved in
performing surgery on the patient.

1

2 Cyber-Physical Systems Software Development

Examples of systems that are directly involved at robotically-assisted surgery are the
da Vinci and the Zeus systems (Sung and Gill, 2001). This thesis work is sponsored by
the TeleFLEX project. This project aims to research, design and construct a robotized
endoscope that can be used to perform biopsies and to perform simple surgeries in
the human intestine. These robotic systems aim to assist at general surgeries using
a minimal invasive approach, resulting in less trauma for the patient. Modern cyber-
physical systems optionally support the possibility of the surgeon being at an other
location, so the system is controlled over a distance using the Internet or any other
network. Besides improving the advantages for the patients, some of these new sys-
tems also improve advantages for the surgeons personally, for example the TeleFLEX
project aims to improve the working posture of the surgeons.

The described medical cyber-physical systems are complex, have a lot of interac-
tion with the operator and their environment and therefore require lots of sensors
and actuators. The control software needs to process lots of data and communica-
tion streams, making sure that all software parts are able to calculate their control
algorithms in a timely matter. Robustness and safety aspects are required to be abso-
lutely sure that the system behaves as intended in all situations, otherwise the system
might inflict harm to the patient with potentially disastrous results.

It is shown above that modern cyber-physical systems become more and more com-
plex due to the various reasons, as a result the control software also becomes more
complex. Additionally, the hardware that executes the software also becomes more
capable and feature rich. For example, modern hardware often has a CPU with mul-
tiple cores. Software that needs to make efficient use of them is more complex than a
single-core implementation. This increasing software complexity requires new design
techniques to efficiently manage this increasing complexity.

1.2 Cyber-Physical System Overview

The terms cyber-physical system and robotic system are both used in the previous sec-
tion. Additionally, the term mechatronic system is a well-known term as well. These
three terms are used to describe the same type of system, i.e. a system that consists of
a mechanical part, an electronic part and a software (control) part.

• The term mechatronic system does focus more on the mechatronics.

• The term robotic system does focus on the robotic application.

• The term cyber-physical system does focus on the presence of a cyber and a
physical part.

The author has chosen to mainly use the term cyber-physical system, because it has a
focus on the presence of the cyber part of the system, which is the main subject of this
thesis. However, in certain situations the term robotic system is more applicable, so it
is used in those situations. The actual components of these systems are explained in
the remainder of this section.

CHAPTER 1. INTRODUCTION 3

A cyber-physical system consists of a cyber domain and a physical domain as shown
in Figure 1.1. The physical domain usually consists of the mechanical and electrical
components of the system. Actuators and sensors convert signals between the elec-
trical domain and the mechanical domain. The cyber domain consists of software that
controls the system, it resides in a (embedded) computing platform. The electrical sig-
nals are converted by digital-analog converters (DACs) and analog-digital converters
(ADCs) to communicate from and to the cyber domain and its software components,
respectively.

Mechanical

Components

Electrical

Components

Physical domain

Control

Software

Components

Cyber domain

Actuators

Sensors

Electrical domain Mechanical domain

DAC

ADC

Figure 1.1: System overview of a cyber-physical system as used in this thesis.

There are multiple software solutions to steer a cyber-physical system. Agent-based
controllers use intelligent, autonomous entities (agents) that interact with the en-
vironment to work towards a specific task. Multi-agent systems (MAS) use multiple
agents to perform more complex tasks (van Breemen, 2001; Dao, 2011).

Another way to structure control software is to implement a subsumption architecture
(Brooks, 1986). Such an architecture consists of multiple modules that are organised
in layers on top of each other, each implementing its particular goal. The modules and
layers are able to suppress or inhibit the outputs of their higher layers.

The layered approach that is used in this thesis is depicted in Figure 1.2. Each layer has
its own set of properties which influences the behaviour of the control components
that are placed on them. Components either directly steer the cyber-physical system
or provide tasks for other components to influence the overall behaviour of the cyber-
physical system. As this thesis focuses on the cyber domain of cyber-physical sys-
tems, the physical domain part is simplified by the Plant and part of the I/O Hardware
blocks. The cyber domain, or Embedded Control Software, is shown in more detail at
the left of the figure. Further details of the embedded control software component of
Figure 1.2 are discussed in Section 2.1.

A typical usage of the architecture is a combination of an embedded computing plat-
form combined with an FPGA, of which an example is shown in Figure 5.10. The FPGA
is used to get access to a lot of easily usable I/O pins, that are used for the connection
with the actuators and sensors. A software driver handles the communication with
the FPGA, so the control software has direct access to the FPGA pins and thus to the
actuator and sensor signals.

4 Cyber-Physical Systems Software Development

Embedded Control Software I/O Hardware Plant

M
e
a
s
.
&

 A
c
t.

Actuators

Sensors

Power

Amplifier
DAC

ADC
Filtering/

ScalingS
a
fe

ty
 L

a
y
e
r

Physical

System

L
o
o
p
 c

o
n
tr

o
l

S
e
q
u
e
n
c
e

c
o
n
tr

o
l

U
s
e
r

In
te

rf
a
c
e

S
u
p
e
rv

is
o
ry

c
o
n
tr

o
l
&

In
te

ra
c
ti

o
n

Non
real-time

Soft
real-time

Hard
real-time

Figure 1.2: Detailed system architecture of a cyber-physical system, Broenink et al. (2010b)

As mentioned earlier, this thesis focuses on the embedded control software design
and implementation. However, the other domains need to be kept in mind as well
during the software design and implementation, as knowledge of the these domains
is required during the design of the software to get the optimal result.

1.3 Objectives

This thesis has the focus on three main objectives. These objectives result in better
control software quality for cyber-physical systems and in a faster, more structured
design trajectory.

• The essential goal of this thesis is to provide a way of working for the design of
the control software for cyber-physical systems, and thereby providing a solu-
tion of the problem of the increasing complexity of the control software, de-
scribed in Section 1.1. This way of working needs to be generically usable for all
kinds of cyber-physical systems, like the medical systems that are involved with
surgeries, industrial systems that are used for assembly lines, service robots hav-
ing interaction with humans, or small research-orientated robotic systems. The
way of working must cover the whole design trajectory, from the initial system
architecture design to the deployment of the control software.

• The second objective of this thesis is to provide a blue-print for a more suit-
able generic software component, as required by the proposed way of working.
Earlier work attempted to design such a component (Groothuis et al., 2008), but
that was not flexible and reusable enough to make it suitable for the different
types of cyber-physical systems.

• The third objective is to describe and provide an execution framework and tool-
ing support that is compliant with the way of working. The way of working
strongly suggests the usage of models to design the control software, as this
helps managing the complexity of modern cyber-physical systems. These mod-
els require framework and tooling support to become fully usable, hence in-
creasing the efficiency and usability of the way of working.

CHAPTER 1. INTRODUCTION 5

Together these objectives should result in a decrease of development time for (com-
plex) cyber-physical control software. Some additional requirements for these object-
ives are discussed in the following sections.

1.3.1 Design Space Exploration

During the development trajectory of a cyber-physical system, multiple designs are of-
ten tried out to find out the optimal solution. Other components could temporarily get
replaced with prototypes, e.g. for testing reasons, or due to the lack of the availability
of the final component. Partially using prototypes for testing is called hardware-in-
the-loop testing.

The way of working must support such an iterative design trajectory. For example, it
should be possible to try multiple software controller implementations, so they keep
matching the different mechanical, prototyped components, or to try out different
control algorithms to see which one is suitable. Therefore, the modelled components
need to be interchangeable with similar component models. Splitting the components
into an interface and the actual implementation helps with this requirement, as the
designer is able to select a different implementation for each (component) interface
used in the system architecture.

1.3.2 Scalability

The way of working needs to be scalable for the design trajectories of all kinds of cyber-
physical systems: It needs to support both small embedded cyber-physical system
designs and large cyber-physical system designs. Support for small embedded sys-
tems consists of keeping the resource usage in mind in order to keep it as low as pos-
sible. Software design for larger systems does not require strict resource housekeep-
ing, so additional features and flexibility can be provided.

Therefore, the way of working must be flexible to support the complete range of design
trajectories from the embedded systems design to the large systems design. This is
incorporated in the way of working by providing additional steps or by making steps
optional. The execution framework must be suitable for embedded systems with a
low amount of resources, but also must provide the additional features and flexibility
when required. This requirement is fulfilled by making the framework modular, so
features can be optionally enabled or disabled, depending on the requirements of the
system that is being developed.

1.3.3 First Time Right

The proposed way of working must be dependable and result in a first-time-right
design. A first-time-right solution would be ideal, but nearly impossible to attain.
However, Verhoef et al. (2012) show that a 30% productivity improvement is within
the possibilities. Aiming at a first-time-right solution, is important as it is easier to in-
corporate design changes in an initial stage of the development than in a later stage,
when a product is sold already. From a company’s point of view, the time to market
must be as low as possible, so a solid way of working helps decreasing this time.

6 Cyber-Physical Systems Software Development

Increasing the probability of a first-time-right design is obtained by using model-
driven design (MDD) techniques. The models that result from these techniques are
used for all kinds of tasks. For example, they can be formally checked or used for sim-
ulations to minimize the design flaws and detect problems at an earlier stage. Generat-
ing code from these models, instead of manually providing the code, further decreases
unforeseen problems. This all increases the probability of a first-time-right design, re-
duces required debugging efforts and results in a software design that is working as
intended for the cyber-physical system it was designed for.

1.4 Approach

The approach to fulfill the objectives, described in Section 1.3, is provided in this sec-
tion. It is based on structural design of the control software for cyber-physical systems.
This helps managing the increasing complexity of this control software and solves the
problem described in Section 1.1.

Using a structural approach helps preventing to make unnecessary mistakes or to find
them in an early development phase, so the resulting cyber-physical systems are as
safe as possible. The Borderc project (Heemels and Muller, 2006) poses the Formal-
isms, Techniques, Methods and Tools approach. It provides a separation of concerns
during design as each part is used separated from the other three. This separation
is used throughout this thesis, to provide generic solutions that are not limited by a
specific language (formalism), design technique/method or tool.

Model-driven design techniques are used to model the system overview at early stages
and to provide the resulting implementation at a later stage. Two types of meta-
models are used to provide the semantics of the models: an architectural meta-model
to model the software architecture and a Communicating Sequential Processes (CSP)
meta-model to model implementation details. The designed models can be formally
verified, simulated and used for model transformations. The continuous reuse of the
models is part of the structural design and prevents problems due to reimplementa-
tion of the system for a different formalism.

The described model-driven design techniques require support in the form of an ex-
ecution framework and tooling. Models themselves cannot be executed directly and
thus need to be converted to another formalism, i.e. a computing language. The exe-
cution framework provides, for convenience reasons, the static part of the converted
formalism, so it does not require to get included over and over.

Tooling support is required to automate the model-driven design techniques, redu-
cing the complexity of the design process. Model editors provide support in con-
structing the models, which can be done graphically or textually. Transformation tools
transform the models from one formalism into another, resulting in for example mod-
els that are optimised for a specific goal or in the executable computer language. Other
tooling support provides means of verifying, simulating or managing the models. In
general tools supporting a specific type of models, are working together forming a tool
suite capable of providing support for the complete design trajectory.

This thesis focuses on all of these aspects, combined in a proposed way of working

CHAPTER 1. INTRODUCTION 7

describing the required trajectory to design control software. The requirements men-
tioned in the previous sections are incorporated into the way of working, making it
suitable to design control software for all types of cyber-physical systems.

1.5 Outline

Detailed information on model-driven design techniques and the other terminology
and techniques used in this thesis is provided in Chapter 2.

The proposed way of working is described in Chapter 3. Model-driven design tech-
niques are used to systematically design the models which are, in the end, used to
obtained the control software. Generic components are recommended to provide ba-
sic functionality for the control software, for example to provide communication and
safety support. It is concluded that the way of working requires an execution frame-
work and dedicated tool support to become fully functional. The chapter is based on
the following publications:

• Broenink, J. F., M. A. Groothuis, P. M. Visser and M. M. Bezemer (2010a), Model-
Driven Robot-Software Design Using Template-Based Target Descriptions, in
ICRA 2010 workshop on Innovative Robot Control Architectures for Demanding
(Research) Applications, Eds. D. Kubus, K. Nilsson and R. S. Johansson, IEEE,
IEEE, pp. 73 – 77

• Bezemer, M. M., M. A. Groothuis and J. F. Broenink (2011a), Way of Working for
Embedded Control Software using Model-Driven Development Techniques, in
IEEE ICRA Workshop on Software Development and Integration in Robotics (SDIR
VI), Eds. D. Brugali, C. Schlegel and J. F. Broenink, IEEE, IEEE, pp. 6 – 11

Next, the Generic Architecture Component (GAC) is discussed in Chapter 4. Separ-
ation of concerns is applied to the design of these components, so their structure is
kept clear and usable in all kinds of situations. A template GAC, a sort of blue-print,
is designed containing the basic functionalities of the component, which then can be
used to design specialised GACs for the specific tasks of the control software. An initial
implementation is modelled using CSP.

The LUNA execution framework is described in Chapter 5. It is an example of an exe-
cution framework that provides support to execute the models that are in the design
steps of the way of working. Additionally, the GAC models are designed using CSP,
so LUNA needs to provide a CSP execution engine. LUNA builds its provided execu-
tion engines on top of a platform abstraction layer, making the engines suitable for all
kinds of platforms. The chapter is based on the following publication:

• Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2011b), LUNA: Hard Real-
Time, Multi-Threaded, CSP-Capable Execution Framework, in Communicating
Process Architectures 2011, Limmerick, volume 68 of Concurrent System Engin-
eering Series, Eds. P. H. Welch, A. T. Sampson, J. B. Pedersen, J. M. Kerridge, J. F.
Broenink and F. R. M. Barnes, IOS Press, Amsterdam, pp. 157 – 175, ISBN 978-1-
60750-773-4, ISSN 1383-7575, doi: 10.3233/978-1-60750-774-1-157

8 Cyber-Physical Systems Software Development

The overall ideas of LUNA are still the same even though LUNA has been improved
since then.

Details about the TERRA tool suite and the tools it consists of, are described in
Chapter 6. The TERRA tools provides methods of editing the models, checking them
for consistency and transforming them into C++ LUNA code. The chapter is based on
the following publication:

• Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2012), Design and Use of
CSP Meta-Model for Embedded Control Software Development, in Communic-
ating Process Architectures 2012, Dundee, volume 69 of Concurrent System En-
gineering Series, Eds. P. H. Welch, F. R. M. Barnes, K. Chalmers, J. B. Pedersen and
A. T. Sampson, Open Channel Publishing, pp. 185 – 199, ISBN 978-0-9565409-5-9

Note that TERRA has be developed much further since then, so large parts of the ori-
ginal paper contents are changed.

The results of this thesis are discussed in Chapter 7.

2
Terminology and Technologies

This thesis contains a specific terminology and throughout this thesis multiple tech-
nologies are used. They might be ambiguous, unknown or unclear in the specific con-
text of this thesis. This chapter provides the explanation of the used terminology and
technologies and discusses them.

2.1 Real-Time Guarantees

Each cyber-physical system needs its software components, for example containing
control algorithms, to run at their specific frequency in order to have a stable beha-
viour. The (embedded) control software must comply to the timeliness requirement
of each component and thus needs to have the results of the component ready at
the required interval. Cooling (2003) splits this timeliness requirement into two sub-
requirements:

• Criticality requirement
This requirement defines the criticality of the problem when the deadline is
missed. To fulfill this requirement the system needs to provide real-time guar-
antees for its components.

• Time requirement
This requirement specifies the required time periods of the components, which
defines the speed and responsiveness of the component.

The focus in this thesis is mainly on the criticality requirement and the resulting real-
time guarantees, when looking at the timeliness of a component. The time require-
ment barely influences the design and execution of a software component, it matters
more when designing the software computing platform that is used to execute the
software of the cyber-physical system.

There are two different types of real-time guarantees: hard real-time and soft real-
time. Kopetz (1997) defines their difference as follows:

“If a result has utility even after the deadline has passed, the deadline is
classified as soft (. . .) If a catastrophe could result if a deadline is missed,
the deadline is called hard”.

9

10 Cyber-Physical Systems Software Development

Components without one of these two real-time guarantees are non mission-critical
components, i.e. they are not part of the control software but provide other, additional
features.

Embedded Control Software

M
e
a
s
.
&

 A
c
t.

S
a
fe

ty
 l
a
y
e
r

L
o
o
p
 c

o
n
tr

o
l

S
e
q
u
e
n
c
e

c
o
n
tr
o
l

U
s
e
r
in

te
rf
a
c
e

S
u
p
e
rv

is
o
ry

c
o
n
tr
o
l
&

In
te

ra
c
ti
o
n

Non
real-time

Soft
real-time

Hard
real-time

Figure 2.1: Embedded control software domain of a cyber-physical system.

Figure 2.1 shows the layered design for embedded control software part of Figure 1.2.
Each layer, like User interface or Sequence control, is used for a certain goal and might
contain one or more software components. Each software layer requires at least one
type of real-time guarantees, varying from no real-time at all to hard real-time. How-
ever, most layers do not have a strict real-time guarantees classification, but provide
a choice to their components, shown in the figure by the curved boundaries of the
real-time guarantees. Even within a component, two different classifications might be
required.

The Loop control layer is the software part that is directly responsible for steering the
physical system and therefore it requires hard real-time guarantees. Hard real-time
guarantees provide strict timing properties, guaranteeing that the given deadlines are
always met, assuming that the system has sufficient resources to begin with. These
hard real-time guarantees are required to make sure that the control algorithm calcu-
lations are finished in time, which in general is required to keep the periodic control
loops stable. Therefore, if this for whatever reason fails, the system is considered to
be unsafe and catastrophic accidents might happen with the physical system or its
surroundings due to wrongly moving parts.

Sequence control components provide support for longer running tasks, like path
planning or environment mapping. Depending on the software requirements, these
tasks require hard real-time or soft real-time guarantees. The components with the
soft real-time guarantees try to meet their deadlines, without giving any hard guaran-
tees. Assuming that the design is correct, nothing bad should happen in case such a
deadline is occasionally not met.

The Supervisory control & Interaction layer contains components that require even
lower real-time guarantees compared to the Sequence control layer components, like
planning the overall activities or communicating with other (cyber-physical) systems.
Their algorithms are typically running for a longer period of time due the nature to
their activities and only once in a while they need to change or influence the sequence

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 11

controllers to update their tasks. These components are provided with either soft or
non real-time guarantees. The left-over resources of the system are used for these
tasks, without giving any guarantees of the availability of these resources.

The User interface layer and to some extend the Supervisory control & interaction layer
are (partially) non real-time as they used to provide results that are directly influencing
the safety critical system parts. As mentioned earlier these real-time guarantee bound-
aries are not strict, for example there are situations where a component requires other
real-time guarantees than regularly are used.

The hard real-time guarantees provide the best guarantees to meet the given dead-
lines, so at a first glance it would the easiest solution from a design perspective to let
the complete software have hard real-time guarantees. Unfortunately, this is not pos-
sible for most systems, as this strains resource usage too much and requires a lot of
development effort.

Depending on the class of the cyber-physical system, the choices for real-time type are
different. For example, a user interface which displays logging information might not
be important for a humanoid robot and can be placed on a non real-time type. The
user interface of an industrial robot is probably more important and therefore needs
to have the soft real-time guarantees, especially if an operator needs it to respond on
particular situations. On the other hand, giving the user interface of the industrial
robot hard real-time guarantees is basically wasting resources, as the human operator
is not responding with hard real-time guarantees as well.

Due to differences of the deadline guarantees of the real-time type, communication
between components on different real-time type is not straightforward. The prop-
erties of both layers need to be maintained while communicating data through the
layer boundaries. For example, a communication channel between a soft real-time
component and hard real-time component, might mess up the guarantees of the hard
real-time component. This would happen when the hard real-time component needs
to wait on the availability of the data, as the soft real-time component might not meet
its guarantees, which is not a problem for that component, but making the hard real-
time component miss its deadline, which is a problem.

A simple solution is to make use of a buffer which is located on the boundary between
the two real-time types. The soft real-time component updates the buffer when its
data is available or calculated. The hard real-time component reads the data from
the buffer, which is always available and can be read in a deterministic manner. The
same goes when the hard real-time component needs to send data to the soft real-
time component. When using such a solution the (control) algorithms need to accept
values that might not yet be updated, otherwise this scheme still results in system
failures.

2.2 Safety

Even though control software is designed as careful as possible and has been tested
thoroughly, safety measures are still required to handle unexpected and undesired
situations, as described by Sözer (2009) in more detail. These situations could be

12 Cyber-Physical Systems Software Development

caused the by environment or by last-minute (hasted) fixes that were required. In fact
safety aspects of a cyber-physical system are very important, so they need to be re-
dundantly implemented in different domains, so when one domain is failing the other
is still able to provide the safety measures.

It is impossible to cover all safety problems by thorough testing only, for example
environmental-related causes are hard to predict and to cover completely. The sys-
tem must react on such situations to prevent accidents with the cyber-physical sys-
tem and/or its environment. The robot-control software architecture has a large role
in properly handling such situations.

Assuming that the control software consists of a network of components, a problem
can be handled on a local level, a global level or both. This depends the origin, severity
and other properties of each problem. Handling the problem locally, in the compon-
ent that detected the problem, could prevent a complete system shut-down. Examples
that could possibly be handled locally are:

• a broken physical component that is not required for the basic functioning of
the system.

• a sensor is not returning correct measurement values anymore, but these meas-
urements can be compensated by other sensors

• an undesired region about to be entered with a robotic arm

Global error handling is the other possibility and is required in more severe situations
that cannot be solved locally anymore. For example if multiple or important physical
components are broken, the system needs to shutdown in a safe way without increas-
ing the damage.

Local error handling is preferred, as local safety handling influences the rest of the
system as little as possible, allowing the rest of the system continue working. Non-
etheless, most cyber-physical systems are likely to have a hybrid solution of local and
global error handling.

2.3 Model-Driven Development

This thesis mainly revolves around the Model-Driven Development (MDD) software
development methodology, Model-Driven Development is also known as Model-
Driven Design or Model-Driven Engineering (MDE). The difference between these
three terms is neglectable for the use in this thesis, if there is any difference at all.

France and Rumpe (2007) describe MDE as a method to

“(reduce) the gap between problem and software implementation do-
mains, using systematic transformations from the problem-level abstrac-
tions to software implementations”

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 13

They furthermore state that the complexity of designing software for systems is re-
duced

“through the use of models that describe complex systems at multiple
levels of abstraction and from a variety of perspectives, and through auto-
mated support for transforming and analyzing models”

Basically, MDE (and thus MDD) is an engineering technique that uses model construc-
tion and model-based transformations to reach a desired end-result, in this thesis this
end-result is the (embedded) control software for cyber-physical systems.

Models are the basis for the MDD methodology, they are used to perform all kinds
of complex or tedious tasks, that otherwise need to be manually performed by the
developer. Typical examples of such tasks are model transformations (Section 2.7) or
(co-)simulations (Section 2.8).

The need for model transformations rises, for example, when a model can be formu-
lated in a formal language. When transformed into such a formal language, the model
quality and consistency issues can be rigorously checked using a formal verification
tool. The Failure Divergence Refinement (FDR2) tool (Formal Systems (Europe) Lim-
ited, 2012) is such a tool that is able to formally check the CSP process algebra (Hoare,
1985). So the original model needs to be transformed into CSP algebra to make use
of the FDR2 capabilities. Of course the principles behind the original model needs to
be compatible with the CSP algebra in order to be able to transform the model. More
information on CSP and its derived models is provided in Section 2.6.

Different types of models are used when a cyber-physical system is modelled. Each
model type has its own advantages and disadvantages and is usable for a specific task
or domain. Model transformations are used to transform these different types of mod-
els into a form that is compatible with all model types in order to combine them. For
example, model-to-code transformation is used to obtain the actual control software
of the cyber-physical system.

Model-driven design techniques are typically combined with tool support, providing
means to construct the required models or to perform the (transformation) tasks using
these models. Integrating these tools into a tool suite (also called toolchain) and auto-
mating these tasks further, streamlines the development process even further, pre-
venting unnecessary human-based errors and reducing the development time of the
control software. This makes small and quick iterative cycles more accessible, as the
introduced manual labor of performing a cycle, like testing, validating, simulating and
so on, are taken care of by the MDD supporting tool suite.

TERRA is an example of such a MDD tool suite and is part of this research. Details
about TERRA are provided in Chapter 6, especially Figure 6.1 is useful in this context,
as it shows how the (MDD) tool suite revolves around the models. 20-sim (Controllab
Products, 2012) is another example of a MDD tool, it provides means to design, analyse
and simulate models of mechatronic systems. These models range from the plant to
control laws or a combination of these. 20-sim provides means to generate C++ code
of the models to embed them into control software applications.

14 Cyber-Physical Systems Software Development

The models that are constructed and used with the MDD techniques can be presen-
ted in a visual/graphical or in a textual way. Both ways have their own advantages and
disadvantages. The main disadvantage of visual modelling is that a (complex) diagram
can be interpreted differently by each person, often depending on the skills of this per-
son, as described by Petre (1995). Visual models also require additional information
for the visual aspect, thus cluttering the information of the ‘pure model’.

On the other hand, visual models have a limited set of symbols, in contrast to a textual
model which can basically consist of any number of symbols (words made by indi-
vidual letters), which is convenient to novice modellers. When using visual models,
careful design of the visual representation and symbols improves the understanding
of the models. This is debated by Moody and Hillegersberg (2009) for UML diagrams,
as the authors pose that the visual representations of the UML diagrams contain flaws,
but this discussion is applicable to visual model representations in general. Either way
of modelling and presenting the resulting models is applicable when using MDD tech-
niques and does not matter (much) within the scope of this thesis.

The MDD methodologies, as described above, are inevitable to comply with both the
technical and business needs of modern designs. Quality control and automatic con-
sistency checking are crucial here, to support an effective design process. The use of
MDD tools makes developing for complex cyber-physical systems a less complex and
more maintainable task (Groothuis et al., 2009).

The ultimate goal for MDD is to create designs that are first-time right, i.e. have the
model(s) verified at multiple stages in the design process, implementation (code) cor-
rect by (model) specification and satisfying all requirements targeted by the design.

2.4 Meta-Models

The MDD software development methodology extensively makes use of models: All
of the accompanying tools require to be able to understand these models. Therefore,
the models need to comply to a definition, so their content is understood correctly
and as intended. Such a definition could solely exist in the mind of the tool developer
and gets directly implemented in the tools. A big disadvantage is that this definition
is loosely constructed, i.e. when additional model data is required, the developer just
adds it to the definition and tools, that require this additional model data, get updated.
After a couple of these iterations, the model definition in the mind of the developer
becomes more hazy and deviates more and more from the implementation in various
tools. Of course when multiple developers are present, the model definition becomes
even more blurred.

The same goes for reusing models and their definitions of third-party tools. Their
model semantics are not publicly available or only live in the minds of the tool de-
velopers. This limits the extensibility and transparency of the models used by these
tools. This research will therefore not make use of the implicit model information of
these third-party tools for modelling purposes to prevent (future) problems.

Meta-models on the other hand strictly define the model structure. A meta-model is
basically a model that describes the semantics of the target model, hence the name

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 15

meta-model. This can be continued to any desired level, for example a meta-meta-
model describes the semantics of a meta-model.

As meta-models are basically models themselves, they can also be developed using
the MDD methodology. For example, EMF (Steinberg et al., 2009) provides the Ecore
meta-model which can be used to model custom meta-models. These meta-models
can be used as a basis for graphical editors and other model based tools. The Ecore
meta-model is an extreme example of meta-modelling: the Ecore meta-model is de-
scribed using itself as a meta-model.

Using the MDD tools, a meta-model can be transformed into a piece of software that
can be used by the MDD tools that needs to understand the models that are described
by the meta-model. Regularly, but at least in the case of EMF, the generated software
contains means to store and retrieve the model. Due to the strictness of the meta-
model, and thus the software, only the meta-model defined data is handled, resulting
in a clean model without undefined data.

Compared to the ‘model definition in the mind of a developer’ implementation, tools
using the generated software meta-model, directly use a derived version of the meta-
model itself. Any changes in the meta-model are reflected in the resulting software and
thus in the tools. If such a definition changes, all tools automatically use the newest
version. Even when a tool does not require the updated meta-model definitions, it is
still able to handle the model data without changes. So, after a meta-model update all
MDD tools are capable of using the new model definitions, without much effort.

2.5 Component Port Connection

Architectural models describing the control software for cyber-physical systems, see
Section 3.1.1, provide information about the system on a high abstraction level. Typ-
ically, a cyber-physical system can be seen as a collection of units that have a specific
functionality. The same goes for control software, which can also be seen as a collec-
tion of units taking care of their specific task. On an architectural model level only the
interfaces of these units are designed, the actual implementations are left out at this
stage of the design process.

Component1 Component2

Figure 2.2: Simple model based on the Component Port Connection elements

The Component Port Connection (CPC) paradigm, described by Klotzbücher et al.
(2013), provides such a level of abstraction. Figure 2.2 shows a simple example model
consisting of the elements provided by the CPC paradigm.

A component defines the unit that provides a designated, functional part of the system.
The interfaces of these components are designed using ports. A port defines that a
connection to another component is required for data communication, like sensor
signals or calculated control values. Both components in the figure contain one port.

16 Cyber-Physical Systems Software Development

Connections are used to connect ports to each other, the example ports of the figure
are connected to each other. A connection has two sides, one side of the connection
provides the communication data, also called the producer side, and the other side
requires the data, the consumer side. In the example figure, the open rectangle of
Component1 indicates a producer port and the closed rectangle of Component2 is the
consumer port. The arrow head of the connection also shows the data flow direction.

The components that are modelled using the CPC paradigm can be seen as placehold-
ers for the actual component implementation. The collection of ports that is part of
a component, provides a so called component interface. This interface must match to
the implementation interface, i.e. the implementation must provide matching ports.
These matching ports must be in revered directions, as an incoming port of the com-
ponent interface is similar to an outgoing port of the implementation, due to the dif-
ferences in their points of view.

2.6 Communicating Sequential Processes

Chapter 1 introduces Communicating Sequential Processes (CSP) (Hoare, 1985) and
shows that it is suitable to describe communication flows within a model. Describing
these communication flows is exactly what is needed when modelling the architecture
of a cyber-physical system.

Additionally, CSP provides the possibility to synchronise processes based on their
communication flow. For example, when a process A requires a certain value from a
process B, a rendezvous communication channel can be used to make sure that pro-
cess A is blocked until process B is able to provide the required value. Another solu-
tion would be to place both processes in a sequential order, which makes sure that
process B is finished before process A and the value is available when process A is
executed. Buffered communication channels are the opposite of rendezvous commu-
nication channels: they do not provide synchronisation as the data is buffered in the
channel. Both the reading and writing process are able to interact with the chan-
nel without getting blocked. This channel type is typically used for communication
between components that have different real-time guarantees.

Furthermore, CSP seamlessly adheres to the CPC paradigm. The CSP processes can
be seen as components and the CSP channels as the connection between these pro-
cesses. The CPC ports can be seen as part of the CSP process that specifies which
channels are required to be connected to a process. For example a reader or a writer
process reads or writes data from a channel respectively. Therefore both require a port
to connect the channel to. The TERRA meta-models that are described in Chapter 6
contain port elements for exactly this reason.

Another advantage of using CSP as a modelling methodology, is that CSP is suitable to
formally check on correctness of the model. Formal verification of a model provides
insights on modelling problems, like deadlocks or livelocks. FDR2 is a tool that is able
to formally check (machine-readable) CSP models for these kinds of problems.

Deadlocks are design flaws, where two or more components are indefinitely waiting on
each other to provide information in order to be able to continue executing and that

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 17

part of the program comes to a halt. Livelocks are design flaws, where a group of pro-
cesses never stop executing and thus preventing the execution of the other processes
called starvation.

! !

? ?

SEQUENTIAL SEQUENTIAL

PARALLEL

Figure 2.3: Example of an obvious deadlock situation

Figure 2.3 shows a simple example of a deadlock situation. It shows two sequential
groups containing a writer process (circle with the exclamation mark) and a reader
process (circle with question mark). A sequential group specifies the execution order
of the processes it contains. The arrow in the figure shows this order, both sequen-
tial groups have their writer executed first and next their reader. The CSP channels
between the writer/reader pairs are rendezvous channels. As mentioned before, the
processes of both ends of such channels must be active to be able to communicate
data. Due to the blocking writers in both sequential groups, the readers never become
active resulting in a deadlock situation. The cause of the deadlock in this example is
very obvious and can be found easily. A simple solution to prevent this deadlock is to
swap the reader and writer of one of the sequential groups, or to change the sequential
groups by parallel groups. For more complex models the use of formal checking tools
provide means to find similar problematic situations that otherwise not would have
been noticed.

The (mathematical) notation of CSP cannot be written using the ASCII encoding, so it
not possible to use this notation as an input for CSP related tools. Therefore, machine-
readable CSP is designed (Scattergood, 1998; Roscoe et al., 1997). It uses the ASCII
character set to describe CSP models. For example the machine-readable CSP repres-
entation of the previous figure is as follows:

channel c1, c2
SEQ1 = c1!var_writer1 ; c2?var_reader1
SEQ2 = c2!var_writer2 ; c1?var_reader2
PAR = SEQ1 [| {| c1, c2 |} |] SEQ2

18 Cyber-Physical Systems Software Development

2.7 Model Transformations

Meta-models and their use-cases are discussed in the previous sections. Modern MDD
tool suites provide graphical editors to manually construct models, based on these
meta-models. Another model construction method is model-to-model transformation
(M2M): A source model is used to construct a resulting model. The resulting model
could conform to either the same meta-model as the source model or to another meta-
model. An example of the first is model optimisation, the source model is optimised
focusing on a certain aspect and an example of the latter is the transformation from
one domain to another. An example implementation and additional details of model-
to-model transformations is provided in Section 6.6.2.

Text-to-model transformation (T2M) is another way to construct models, it could be
used to (re)create a model from plain text information, e.g. the source code, to make
its structure more clear. For example, C++ code could be converted to a CSP model
to get a (better) understanding of the concurrent architecture of the code. As code
files do not contain all required information that (graphical) models require, like co-
ordinates and object dimensions, this needs to be added by either the transformation
algorithm or the user. This form of model construction is not seen often, probably due
to complexity issues, missing model data and the lack of functional use.

Model transformations are also used to convert a model into the final, required object.
The model is used as an easy means to construct or collect the required information
for this final object. For example, a CSP model can be transformed into a machine-
readable CSP file so it can be used by formal verification tools, like FDR2. This model
transformation is called a model-to-text transformation (M2T), as the resulting file is
a plain text file. If the transformation result is in the form of a computer language, or
source code, the transformation is also called a model-to-code transformation (M2C)
or code generation. The differences between M2T and M2C transformation techniques
are minimal, if there are any at all.

2.8 Co-Simulation

Formal verification of a model only shows architectural design problems, as discussed
in Section 2.6. Additional checks are required to see whether the model is behaving as
expected. Executing the software directly on the actual cyber-physical system might
be hazardous. Especially when dangerous environmental situations might occur or
the system gets damaged due to improper and untested software. Software simula-
tions provide means to safely check whether the architectural model and its imple-
mented components contain errors.

The models resulting from the MDD techniques can also be used for the simulations.
These models are based on meta-models, so the definitions of all model elements are
known. The simulator uses these known definitions to determine how the software
behaves when being executed on the real computing platform. For example the CSP
meta-model implicitly contains definitions of the execution order of processes. These
definitions can be used by the simulator to determine the execution flow of CSP a
model. The actual accuracy of the simulation depends on the simulator and could

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 19

vary from just determining the process execution order to a complete simulation as if
the software would be have executed on a specific hardware platform.

The described simulations are practically unusable for models that contain compon-
ents which implementation is provided by external tools, since knowledge about the
format and behaviour these implementation is required, i.e. the meta-model defini-
tions of them are unknown to the simulator. This problem can be overcome when the
external tool has simulation capabilities, which can be accessed from outside of the
tool. The simulation capabilities of the tool need to be used in these cases, so explicit
knowledge of the external meta-model is not required. This technique of combining
the simulators of several tools is called co-simulation.

P1 P2

Tool B

B1A1 A2

Tool A

Main Tool

Figure 2.4: Co-simulation example

Figure 2.4 shows a co-simulation example. One tool needs to take the lead during
the co-simulation, this tool is called the The Main Tool in the example, making sure
that all simulating tools stay synchronised. Synchronisation between simulation tools
consists for example of issuing commands to take a single simulation step to the other
simulators making sure that the correct execution order is maintained. Another syn-
chronisation task is providing the required data to a simulation tool that is going to
perform its simulation. In the example processes A1 and A2 require data from P1, so
the Main Tool needs to provide this data to Tool A, so Tool A is able to simulate the next
step. The result of this simulation is then sent to P2, which sends its result to another
external Tool B.

The leading tool typically is the tool that handles the simulation of the system archi-
tectural model. It has information about the external modelled components that is
required for synchronisation. This information is required to perform co-simulations
as it determines the execution order at the highest system level.

A variant of co-simulation is hardware-in-the-loop simulation (Isermann et al., 1999).
As the term already indicates, this type of simulation (partially) uses actual hardware
to perform the simulations, instead of an external simulation tool. This type of simu-
lating is particularly useful in situations where parts of the hardware are available, and
other parts are not. Advantage over regular co-simulations is, that the hardware that
is available can be used to obtain more realistic results of a higher quality. Hardware-
in-the-loop simulations save development time, as the designers do not need to wait

20 Cyber-Physical Systems Software Development

until the complete cyber-physical system is constructed and available, but still are able
to increase the accuracy of the simulations and thus the software quality.

Another advantage of hardware-in-the-loop simulation is that the system can be fur-
ther checked in a safe environment. For example, software timing constraints can be
measured and checked using the actual target platform but still using a plant simu-
lation. In situations where these constrains are not yet met, resulting in problematic
situations, the actual plant does not get damaged.

2.9 Deployment

After formal checks and (co-)simulations showed that the model is designed and prop-
erly working, the model needs to be deployed to the target platform. It is obvious that
the model cannot be executed on the target directly, as it needs to be converted to
executable code that is understood by the target platform.

First the model is transformed into source code, using the model-to-text transform-
ations, which then needs to be compiled into an executable application. Compiling
source code for another target (compared to the development environment) is called
cross-compiling. Cyber-physical systems mostly have embedded computers, which
are low on resources and typically do not have (much) peripherals attached. Due to
the lack of resources, these embedded computers generally do not have development
tools installed. So a development computer is required to develop the embedded con-
trol software and cross-compilation is necessary to provide the actual executable ap-
plication for the embedded computer.

Next, the compiled executable needs to be transferred from the development com-
puter to the target. If this is not too often required, this could be done manually, but
most of the time this deployment needs to be done more than once and deployment
tools provide services to ease this repeating task.

Deployment tool suites handle cross-compilation, transferring the executable to the
target and the actual on-target execution. Services like collecting log data and
hardware-in-the-loop simulations could also be provided by the deployment tool, fur-
ther easing the tasks of the developer.

Obviously, the deployment tool suite requires additional information for its tasks. For
example, target information of hardware-specific parts is required, so this can be used
when generating the executable for a specific target platform. Such hardware-specific
details could provide the details on access the sensors and actuators of the cyber-
physical system from within the software. The actually required details depend on
the deployment tool and the services it provides.

2.10 Software Frameworks

The model-to-code transformation tools are able to convert the model into source
code, as explained in Section 2.7. Actual execution of models requires a lot of addi-
tional code to support all used meta-model elements. For example, a CSP process
requires an execution engine which schedules the processes in a correct execution

CHAPTER 2. TERMINOLOGY AND TECHNOLOGIES 21

order. Used channel elements require actual implementations to actually send data
from their producing to their consuming processes. These required features can be
provided by the transformations as well, but as this is mostly static code it makes more
sense to make use of a software framework that provides this required, static code. It
makes the transformations less complicated and the static code easier to maintain.

Besides providing high level components, like an execution engine, a framework is
also used to provide an operating system and/or target independent software plat-
form by means of a hardware abstraction layer (HAL). It typically hides the platform
dependent system calls with a public application programming interface (API). An API
provides an interface that has one or more implementations, which are hidden from
the application. Depending on certain properties, in this case the selected target plat-
form, the correct implementation is used without active interaction of the application.
This results in a platform independent application being unaware of the underlying
OS or hardware. Ideally, such an application be case executed on different platforms
without the need to apply platform dependent modifications.

3
Design Approach for Embedded Control

Software

Design patterns help managing the complexity of designing (embedded) control soft-
ware for the modern cyber-physical systems that are described in Chapter 1. The way
of working that is proposed in this chapter, uses the model-driven development ap-
proach combined with separation of concerns to reduce the complexity. It covers the
complete design trajectory, starting at initial system architecture designs to the de-
ployment of the finished control software on the target.

The ultimate goal of the way of working is to provide a first-time-right approach for
the software implementation of a cyber-physical system. Preventing excessive design
time, while maintaining the designers point of view and preferred techniques and
tools, is a more realistic goal of the way of working. This is accomplished by defining
a structured way of designing the software, reusability of previously designed models
and components reduce design time further.

Several design methods are being researched that seem promising to increase the
quality and decrease the design time of control software development. For example,
the BRICS project defined the BRICS Component Model (BCM) and mapped it on the 4
layers of model abstractions (meta-models) defined by OMG (Klotzbücher et al., 2013).
The DESTECS project focuses on co-simulation (Pierce et al., 2012) and model man-
agement (Zhang and Broenink, 2013). The way of working must integrate, or at least
tolerate, these researched design methods, in order to let the way of working become
as universal applicable as possible.

3.1 Way of Working

Figure 3.1 shows the required software steps when developing embedded control soft-
ware for a cyber-physical system. It starts with designing the software architecture (I-a)
and the control algorithms (I-b). Both are typically designed using model-driven en-
gineering tools and result in models of the architecture and algorithms. Using verific-
ation and simulation techniques (II) these models are continuously refined until their
required functionality is met.

23

24 Cyber-Physical Systems Software Development

Software

Architecture

Control

Algorithms

law + plant

Verification and

Simulation

Functionality

Implementation

Embedded Control

Software

Software execution

platform details

I-a I-b

II

III

Figure 3.1: Overview of required steps for embedded control software development of cyber-
physical systems

The embedded control software is created by combining the software architecture and
control law algorithm models (III). Additional implementation details, like details of
the computing platform, sensors and actuators, are added to make the software ex-
ecutable on the cyber-physical system.

More detailed steps to design control software are shown in Figure 3.2. The figure
contains 5 starting points (of the 5 available design branches), labelled (a) to (e). Each
starting point handles a particular domain of the design. Efficient design of control
software is full exploited when certain software aspects are developed simultaneously.
This simultaneous development makes sure that problems are implemented in the
most suitable domain.

The electrical domain (a) and the mechanical domain (e) are out of scope, when look-
ing at control software development, and are not further discussed. The software and
controller design branches ((b), (c) and (d)) correspond with the two starting points
(I-a and I-b) that are shown in Figure 3.1.

Depending on the focus and interest of the developer, branch (b) or (d) are the most
likely starting points, as branch (c) requires information of branch (d) that is not yet
available. Both branches (b) and (d) can be simultaneously used to start the (control)
software development, if a large enough development team is available

At certain steps there is interaction between the different development branches, de-
picted in the figure by the horizontal, bidirectional arrows. At these points, the designs
in the different domains are ‘synchronised’; the features of both models are compared.
As each domain has its unique properties, design problems can be solved or simplific-
ations can be obtained by choosing a correct domain, during the implementation of
a certain software aspect. For example, unwanted dynamic behaviour can be solved
in both the controller and mechanics domain, the interaction point at the top-right of
the figure provides means to move the problem to the domain that is most suitable to
solve it.

Branch (b) is most interesting for software design for cyber-physical systems, therefore
this branch will have the main focus of the following discussion. Furthermore, it is

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 25

Plant dynamics

Time Triggered &
Discrete Event software

Simulation time
Real-time

Plant dynamics
Control laws

(Loop control, CT)

(G)UI, Supervisory,

Sequence, Safety

Real plant

Testing software

implementation
Plant model

(RT sim)

Final software

Software design Controller design Mechanics designElectronics design

I/O

I/O

stub

Plant and
I/O dynamics

Control software

architecture

a) b) c) d) e)

1

3a

2

3b

4

Cyber-Physical System

Figure 3.2: Steps of the way of working to design control software for cyber-physical systems,
further improvement of Broenink et al. (2010b)

assumed that the plant and its models are already available or being developed by
other members of the team.

The way of working consists of the following steps, represented by the grey circled
numbers in the figure. The steps are optional, if one is not required for the cyber-
physical system software design, it can be skipped, but in order to design first-time-
right software it is adviced to make use of all the steps:

1 The software branch (b) starts with designing an architectural overview of all loop
control components, required to steer all parts of the cyber-physical system.

2 Additional components are added to the architectural overview to handle high-
level tasks, such as the sequence control, supervisory control or user interface
components. The design is now looking similar to the embedded control software
part of Figure 1.2. At this point branch (c) requires that the low level (Loop) con-
trollers are designed, which is typically done using the dynamic plant model of
branch (d).

3 The implementations of the loop control components of the architectural model
are provided by the control law designs of branch (c). The implementations of
the other modelled components, also need to be filled in by now. At this point
the modelled functionality of the control software of the cyber-physical system is
complete. The dynamical plant model now includes I/O dynamics to mimic the
actual sensor and actuator signals that are available in the cyber-physical system.

3a In this sub-step the resulting software (models) are (co-)simulated, in collab-
oration with the dynamic plant model, to check whether the software behaves
as intended. Depending on the simulation results, the models can be fine-
tuned to get a better behaviour.

26 Cyber-Physical Systems Software Development

3b When the software fine-tuning is finished and showing the intended beha-
viour, real-time constraints are included by testing the control software on
the target computing platform. Again, the simulation and test results can be
used to further fine-tune the software components.

4 When the mechanical, electronic and software designs are finished and properly
functioning according to the simulations, the software can be deployed and tested
on the cyber-physical system.

The modelling phase (Figure 3.1, step I) is most interesting for control software design.
According to Brugali and Scandurra (2009), separating the component specification
and implementation leads to better reusable component parts. The way of working
also practices this separation: The control component specification is taken care of by
step 1 , this results in an architectural model. The high-level components are added
to this network in step 2 . Now it provides information on the requirements of the
components that are used in the system and shows the network of these components.
The next part of step 2 and the first part of step 3 provide the implementation of the
components that were defined in the architectural model.

The generic overview of the way of working, incorporating all development domains
and their interactions is depicted in Figure 3.2. In the following sections, the focus is
placed on the specific aspects of the steps of the software design branch of the mod-
elling phase, explaining the details required to design the cyber-physical system soft-
ware following the way of working.

3.1.1 Software Architecture Modelling

The software architecture needs to be modelled according to the CPC methodology,
described in Section 2.5. Separate parts of the system are modelled as components
with ports and connections for their communication. These components implement
the controller algorithms required to control the separate parts of the system. Addi-
tional supervisory and sequence control components need to be added to the model
to take care of the cooperation of the controller components, so the system is able to
complete complexer tasks.

An example architecture overview of a cyber-physical system is shown in Figure 3.3,
it is mapped to the overview of Figure 1.2. At the right an example of a plant is de-
picted, in this case a youBot arm (Bischoff et al., 2011), it has 5 joints, a gripper and
is mounted on a base. In the middle the hardware interface is available, depicted in a
simple manner with a bi-direction arrow as its actual implementation is out of scope
for this thesis. The left side of the figure shows all separate joint control components
with some additional components of the supervisory and sequential tasks.

The architecture model of the control software of the cyber-physical system is shown
in Figure 3.4. All defined units of the architectural overview have their own compon-
ent containing their control law implementations. These loop controllers require the
sensor data of their component from the hardware interface and provide the control
signals to the hardware interface, resulting in the typical control loop structure. The

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 27

Base Control

Shoulder

Control

Gripper

Control

Elbow

Control

Wrist

Control

Wrist

Control

Wrist

Sequence

controller

& other

components

Hardware

Interface

Embedded Control Software I/O Hardware Plant

Figure 3.3: Example overview of a cyber-physical system

sequence controller component is used to manage the loop controllers. Connections
between the sequence controller and the loop controllers are used to steer and syn-
chronise the loop controllers in order to perform the actual required tasks with the
arm. The implementation of the hardware interface component makes use of avail-
able frameworks or drivers that are able to communicate with the particular physical
hardware units.

As mentioned, each of the joints has its own component in the architecture model.
Assuming that the joints in this example cyber-physical system are controlled in a
similar way, the implementations of (some of) the joint components can be reused.
The shoulder, elbow and wrist tilt joints are all angular rotating joints with a limited
range. Therefore, their loop control component should use the same implementa-
tions, provided with their initial parameters for obtain the required dynamical beha-
viour for the part of the robotic arm they need to steer. The same goes for the base and
wrist roll joints, these joints could also share their controller implementation.

Reusability can be taken one step further as all components require a basic set of func-
tionalities. The basic functionality set is required to make sure that the components
are able to run next to each other, to combine them into larger, more complex com-
ponents and to be able to let them interact with each other and their environment. All
components also require some form of safety support, to react on (un)foreseen safety
problems, and configuration support, so configuration parameters can be provided
to the controller to provide the specific behaviour of a more generic, reusable con-
troller implementation. These kind of default component functionalities should be
provided by a template component, preventing reinventing the wheel for each com-
ponent and prevents repetitive development efforts. Section 3.3 provides more in-
formation of such a generic component.

3.1.2 Software Testing

After the architecture modelling phases are finished, steps 1 and 2 of Section 3.1,
the results need to be tested more thoroughly as indicted by step 3 . During the
design of the models, some functional tests are likely to be performed already, this

28 Cyber-Physical Systems Software Development

Base_Joint

Wrist_Tilt Gripper

Sequence_Controller

Elbow_Joint

Shoulder_Joint

Wrist_Roll

Hardware_Interface

Figure 3.4: Architecture model for the cyber-physical system example

step includes behavioural tests to test the component implementations as well. As
mentioned earlier in the first-time-right objective discussion (Section 1.3.3), thorough
testing of the models prevents problems during execution, which then takes more ef-
fort to solve or might result in broken (physical) parts of the system.

The testing step is split into two parts:

1. Step 3a tests the models against a plant on a more architectural level, i.e. to test
whether the software is behaving as expected.

2. Step 3b focuses on the timing requirements to check whether the required dead-
lines are met or not.

The actual testing methodologies depend on the type of the model that requires test-
ing, for example a state-machine needs to be checked whether all states, that are part
of the regular execution, are reachable and a CSP model needs to be checked using
formal verification methods to check for scheduling problems, like deadlocks, caus-
ing the application to become unresponsive. Furthermore, testing methodologies can
either test the functional correctness, for example the formal checks, or whether the
application behaves as expected. The latter mostly is performed using visual inspec-
tion by the developer as it is hard to provide behavioural tests that check the complete
behaviour of the system. Visual inspection is possible using co-simulation and the dy-
namic plant models, this prevents breaking the actual system when the behavioural
tests failed and the developer did not turn off the system in time.

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 29

3.1.3 Software Deployment

The software can be executed on the target platform, after software testing passed.
The models need to be converted into an executable application that can be deployed
to the computing platform. Converting and deploying software on the target platform
requires the steps shown in Figure 3.5, together these steps form step 4 .

Tool 1 Tool 2

model refactoring
code generation

Target Connector

Compiler Collection

Deployment Manager

Computing
platform

Code generation helpers
Code templates, scripting

code processing

cross compilation

send to target(s)

Target template
target specific I/O information

Target compile info
CPU, architecture, frameworks

Target specifics
location, interface

Legend

Action

Input

Tool
Dataflow

A

B

C

D

Model Model

Figure 3.5: Overview of required tools in embedded control software development, based on
Bezemer et al. (2011a)

The resulting models of step 3 of the way of working are shown at the top of the figure.
One of more tools might be used to design these models and they might interact which
each other. The exact details depend the tools that were used in the design process and
the requirements of the control software. The conversion from models to executable
code on the target platform is done through these steps:

A These models first need to be converted to source code. Before this conversion
model refactoring using model-to-model transformations might take place for
model optimisation reasons. The code generation is done by the modelling tool
itself, or a closely integrated part of a tool suite or toolchain of which the model-
ling tool is also part of.

B Target-specific information is added to the source code by the target connector.
This information typically contains details about the target cyber-physical system
that hosts the control software, like I/O capabilities and other (peripheral) hard-
ware information. Whether this information is added by the modelling tool suite,
e.g. during the model refactoring, to the models before code generation, or dir-
ectly to the source code afterwards, does not really matter. Just as before, this
probably depends on the modelling tool and whether it is part of a larger tool
suite.

30 Cyber-Physical Systems Software Development

C The code now needs to be compiled to create the actual executable application
that is going to be executed on the target. During compilation one or more frame-
works are typically added to provide execution engines and hardware abstraction
layers.

D The last step is to send the executable to the computing platform. For this the
deployment manager requires target specifics, like the location of the actual target
so it is able to connect to it or the required communication interface. Typical
features of a deployment manager also include: Remotely starting the execution
of the software on the computing platform or sending logging information back
to the development platform.

Steps B until D are usually handled by a single deployment tool or technically a tool
suite as deployment is probably done by multiple specialised tools. The tools have
access to the information about the resources and capabilities of the intended tar-
get platform and is able to provide these details to the software. Cross-compiling the
software is also target dependent, so the deployment tool suite provides the correct
cross-compilation tools during step C . Sending the compiled executable to the tar-
get requires support on the target itself, as the executable needs to be accepted, stored
and executed on the target. This on-target support must match with the expected
communication protocol. It therefore provided by the deployment tool suite as well
and typically needs to be installed on the target once. The deployment tool suite in
combination with the on-target support, also provides means for sending log and de-
bug information back to the development platform.

An example of such a deployment tool suite is 20-sim 4C (Posthumus, 2007), it in-
cludes the described steps and requirements. Its intended use-case is to provide this
support for 20-sim (Controllab Products, 2012), but it is possible to use 20-sim 4C with
other modelling tool suites as well. In such situations the (generated) source code
needs to be accompanied with additional configuration files. The configuration de-
tails provided by these files are used by 20-sim 4C to cross-compile and deploy the
software.

Simulink Coder (The MathWorks, 2012) is another example of a combined code gen-
eration and deployment tool. It uses MATLAB and Simulink files and models as input
to generate code and execute it on a provided execution environment.

3.2 Tool Coverage

The previous section explained the different methodologies that are part of the way
of working to design the software models and how to convert and deploy them. This
section maps these methodologies on actual tools of any tool suite, e.g. the TERRA tool
suite that is described in Chapter 6, and shows what features the tools need to provide
in order to support the described way of working. Additional ideas and possibilities of
the tooling as discussed as well.

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 31

3.2.1 Graphical Modelling

The most important and central part of the way of working are the models, as all design
steps revolve around them. Graphical models and modelling tools further increase the
understanding and maintainability of the models and the way of working. Modern
graphical modelling tools, called editors, are likely to interactively guide the user to
use the correct model syntax and semantics, point out errors and help in various other
ways during the design process. Thereby increasing the productivity of the designer,
as the designer is able to directly correct a problem and learn from it, so this type of
problem can be prevented on beforehand the next time.

CPC meta-model

CSP

meta-model

Architecture

meta-model

Another specialised

meta-model

Specialized

 meta-models

Base

meta-model(s)

Figure 3.6: Inheritance diagram showing the shared modularity of the meta-models

The first step in the way of working towards the embedded software for a cyber-
physical system, is to design the architectural model. Such a model provides the over-
all overview and should be based on the CPC methodology, as an architecture model
typically requires components, ports and connections.

The CPC meta-model is shown in Figure 3.6, acting as the base implementation of the
other meta-models. These other meta-models extend the CPC meta-model, as shown
by the open arrows in the figure, to add more, specific model semantics. By using
the same base implementation, the models become (more) compatible to each other,
which is one of the reasons for using the CPC methodologies. Furthermore it saves
development resources as this base and its support only needs to implemented once
and then can be reused for all other specialised meta-models and their tools.

Optionally, but not shown in the figure, it is possible to let a meta-model reuse mul-
tiple base or specialised meta-models in a modular way. For example, the architecture
meta-model could reuse the CSP meta-model as it defines definitions to specify the re-
lation between processes, components in the architectural meta-model, which could
improve the flexibility (and complexity) of the modelling capabilities of the architec-
tural models. In the case that the architecture meta-model actually does implement
the CSP meta-model, it would make the CSP-related features, like formal checking,
available to the architectural models and tools without much effort.

The architectural modelling tool, or architecture editor, provides means to model the
software architecture of the system by defining the (control) components (step 1 of
Section 3.1). During steps 2 and 3 , these software components are provided with
their actual implementation. Their implementations must be based on a meta-model
that extends the CPC meta-model. Furthermore, the component interface and the

32 Cyber-Physical Systems Software Development

component implementation interface must be matching. Both interface types have
their own role to synchronise the architecture component and their implementation:

• The architecture model defines the interface of each components which spe-
cifies what ports are available, or required.

• The component implementation needs to adhere to this interface by providing
the same ports (with reversed direction as described in Section 2.5), so the com-
munication flow is able to go from the architectural model to the correct location
in the implementation models.

Furthermore, as these implementation models need to be easily connectable to the
architectural models, their meta-models must also support the CPC methodology.

A specialised meta-model is not required in situations where the architectural com-
ponents do not require an implementation that is designed with the modelling tool
suite. This is the case, for example, when the implementation is directly designed in a
programming language or when the implementation is provided by an external tool.
The architecture modelling tool needs to provide direct support for these cases. This
might for example include providing a textual editor or means to modify the model
parameters to fine-tune the external model.

3.2.2 Code Generation

Code generation tool support takes care of transforming the models into source code,
using model-to-code transformations, also known as code generation. This source
code, together with framework(s), can be compiled into the actual executable applica-
tion, as shown in Figure 3.7. In a sense, code generation tools add information that is
required to execute the model.

Meta-Model Model

Source

Code

Execution

Framework(s)

Executable

Code

+
+

code

generation

compilation

Figure 3.7: Overview of the required steps to convert a model into an executable application

One or more frameworks are used to properly compile the source code into the ex-
ecutable code. These frameworks contain the static code that is model independent
to provide specific functionality, like a model execution engine. Code generation tools

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 33

make use of these frameworks to reduce the generation of static code, which increases
the maintainability of the source code and the code generation tool itself. Additional
requirements for execution frameworks are provided in Section 3.4.

LUNA, described in Chapter 5, is an example of such an execution framework. Each
meta-model is typically backed up by an accompanying execution engine to support
the generated code. LUNA provides, for example, a CSP execution engine, which con-
tains the static code to support CSP constructs, schedulers and rendezvous channels.

Other types of frameworks, containing for example advanced or complex sensors, are
typically targeted when generating code for cyber-physical systems. These additional
frameworks are then used to provide the static code, or drivers, for these complex
hardware components. ROS (Quigley et al., 2009) is for example a typical additional
framework, it supports all kinds of complex sensors like range finders, cameras, force,
torque and touch sensors (ROS Sensors, 2012).

A framework could also provide support for specific, complex controller related tasks,
like cartesian or kinematic controllers. Code generation of such frameworks requires
meta-model specialisations that is able to address these complex tasks, which needs
specialised tool support. Orocos is a framework that provides support for these kinds
of tasks as shown by Buys et al. (2011).

Code generation tools are also required when an external tool does not provide an ex-
plicit meta-model. Instead of using the target meta-model to transform the source
model, the code generation tool needs to provide its own version of the target se-
mantics in order to generate the target code. This is usually more error-prone, as
the target semantics are not completely interpreted correctly, or are unknown and
needed to be reverse-engineered (guessed), or have been changed over time and the
semantics used by tool has not been updated accordingly. For example, the formal
verification tool FDR2 uses a plain text file as input using the machine-readable CSP
syntax. Converting a CSP model into such a file, requires model-to-text transforma-
tions, so the CSP model can read by the external tool in order to formally check the
original CSP model.

3.2.3 Model-to-Model Transformations

Model-to-model transformations are a more reliable transformation method, com-
pared to the model-to-code transformations described in the previous section. They
use the strictly defined model structure of the meta-models of the source and destin-
ation models. If the source or target meta-model changes, the tool can be recompiled
and uses the update meta-model as well. In situations where the meta-model un-
derwent some drastic changes, recompilation fails and the tool developer needs to
address these changes. In all situations, the updated tool makes use of the most up-
to-date model semantics, or simply does not support the newest meta-model version
anymore. In the end, the tool will (should) never try to use outdated semantics for its
transformations.

Additionally, it is possible for model-to-model transformations to use the same meta-
model for both the source and destination model. This is for example the case when

34 Cyber-Physical Systems Software Development

the transformation is used to optimise the model for a specific requirements, like
optimal model execution speeds or low resource usage. In such cases all redundant
model information, as defined by optimisation goals, is stripped without influencing
the intended behaviour of the model. The resulting model might look completely dif-
ferent compared to original model and might not match the modelling point of view
of the designer anymore.

As the optimisation result still uses the same destination model, all other tools are
still usable to perform their tasks on the optimised model, so model optimisation can
be seen and used as an intermediate step in the modelling toolchain. This type of
model transformation is typically be done before model-to-code transformations to
automatically generate an optimal implementation of the model to execute on the
target platform (Bezemer et al., 2009).

3.2.4 Co-Simulation

As explained earlier, co-simulation requires a tool that is leading the simulation. This
tool should have knowledge about the architectural model structure in order to be able
to run the simulation.

An additional and desired feature of a co-simulation tool is to be able to choose a spe-
cific implementation for each defined component interface. For example, compon-
ents that are providing a connection with the actual cyber-physical system should be
simulated with a component implementation that simulates the hardware or that is
able to connect to the dynamic plant model. This is depicted by the I/O stub compon-
ent in Figure 3.2, which is replaced by the real I/O implementation in a later stage. This
prevents that the actual system needs to be finished and available and solves safety
and construction issues early stages of system development. In later stages of the sys-
tem development, the chosen component implementations could provide support for
hardware-in-the-loop simulations.

This feature can also be used to try out different component implementation ideas.
Especially in combination with a model management tool, that is able to keep track
of the different component implementations and complete coherent sets component
implementations of an architecture model. These sets of component implementation
can also be used to simulation specific scenarios.

3.3 Generic Architecture Components

It is concluded in Section 3.1.1 that a Generic Architecture Component (GAC) is de-
sired. Such a component provides a generic component implementation in order to
prevent wasting design resources due to reinventing such a component structure over
and over. The GAC needs to be usable in a variety of situations in order to make it a
usable modelling method with respect to the way of working. Therefore, it needs to
provide features that are required by all (or at least most) component implementa-
tions, but in such a way that these features are optional and not restricting the design-
ers in their preferred ways of working.

Most important is handling the life cycle of a component during its execution. All com-

CHAPTER 3. DESIGN APPROACH FOR EMBEDDED CONTROL SOFTWARE 35

ponents need to be initialized, configured, started, executed and stopped during the
execution flow of the application. Support for such a life cycle could be provided with a
Finite State Machine (FSM) implementation. A command interface would be required
to provide means to externally influence the life-cycle states of the component.

Each component also requires some form of safety support. The GAC must provide
mechanisms to check whether incoming and outgoing signals are correct. For ex-
ample, it might be required that these signals stay within their corresponding, expec-
ted ranges. If this is not the case, an error signal needs to be propagated to the (local)
error handlers. These error handlers are able to correct the behaviour of the cyber-
physical system, or to (partially) shut it down in a safe way to prevent damage to itself
or its environment.

The GAC needs to be reusable in two ways:

• It is used in a variety of component implementations and situations. The GAC
must provide a basic implementation that is compatible with (most of) these
possible use cases.

• The actual component implementation using the GAC, support a complex part
of a cyber-physical system, otherwise it was not sensible to use a GAC. Designing
and testing such complex components take time and effort, so afterwards they
must be usable in different (parts of) cyber-physical systems.

The GAC requirements that are described in this section, result in a GAC component
interface defining signals for the commands, sensor and actuator data, and so on. In-
terfaces of different GACs need to be connectable, so a network of component can be
constructed, resulting in the software architecture for the cyber-physical system con-
trol software.

These requirements are taken into account during the development of the GAC imple-
mentation. More information about all requirements, the design and the implement-
ation of the GAC is provided in Chapter 4.

3.4 Execution Framework

The execution framework sits in between the modelling tools and the target platform,
as depicted in Figure 3.7. It provides an application programming interface (API) and
a corresponding implementation, providing sufficient support to keep the amount of
generated code to a minimum. As a result the code generation tools do not require to
generate the required static code each time.

A suitable execution framework must also provide support for the target platform that
is going to execute the control software. The execution framework should provide an
abstraction layer between the provided interface and the actual hardware and its cap-
abilities. It implements the requirements to properly use the hardware, like the at-
tached peripherals, sensors and actuators, which can then be used the other compon-
ents of the framework or by the applications themselves. Additionally, it is desired to
support an implementation for the development platform as well. This would provide

36 Cyber-Physical Systems Software Development

means to execute and test the software more easily within the environment a designer
is working, resulting in easy testing even when the target platform is not yet available.

The execution framework must be able to guarantee that deadlines are always met
within the defined time, called hard real-time support. Hard real-time deadlines are
required for proper functioning of the loop control law implementations.

Additional details on the requirements of an execution framework are provided by
Chapter 5. The design and implementation details of the LUNA framework are dis-
cussed in the rest of that chapter.

3.5 Conclusions

A way of working that is suitable to design (embedded) control software for cyber-
physical systems using model-driven design techniques, is proposed and discussed in
this chapter. It is integrated and compatible with the development trajectories of the
electrical and mechanical domains. Furthermore, the way of working is designed to
be as scalable as possible. For example, it provides and describe simulation phases to
it possible to use for complex cyber-physical system. On the other hand, all steps are
optional so simple software designs do not require to implement all design steps.

The requirements of the way of working are provided and discusses as well. These
requirements consist of the generic architecture component, tool support and execu-
tion frameworks. Without implementations of these requirements the way of working
loses much of its value.

The next chapters provide further details on these requirements and show imple-
mentation details of the actual development of these way of working parts. First,
in Chapter 4 the details of the GAC model design, implementation and use-case
are provided. Next the LUNA design and implementation details are described in
Chapter 5 and finally the TERRA tool suite is described in Chapter 6.

Together these three chapters provide the implementation details of largest part of the
way of working. The only missing part of the way of working is the deployment stage
and its accompanying tool-chain, as it is not part of the research of this thesis.

4
Generic Architecture Component

Information on the design and implementation of the Generic Architecture Compon-
ent (GAC) is provided in this chapter. Such an architecture component provides a base
template to design component implementations for cyber-physical systems. It is part
of the way of working (Chapter 3), but the ideas of the GAC are also usable in other
situations.

The generic architecture component has the following properties:

• Genericity
The component is usable for all kinds of (cyber-physical) systems, ranging from
low resource embedded systems to large industrial or medical systems. Further-
more, all kinds of tasks must be supported by the GAC, ranging from low-level
loop controllers to supervising algorithms which plan the behaviour of the sys-
tem. In order words: the component needs to be generic.

• Architectural
The component is suitable to be used as part of the system architecture. The sys-
tem architecture consists of the components which together are able to control
the physical system. These components are connected to each other, in order
to be able to work together on their required tasks. The GAC needs to be part of
this architecture of components and provides support for this.

• Component
The GAC behaves like any other software component, it provides base support
for often required functionalities.

The GAC that is discussed in this chapter is a blue-print or template with base func-
tionalities/support to construct real component implementations that are derived
from this template GAC, instead of a real component implementation. The GAC blue-
print is called template GAC in this chapter and the component implementation based
on the GAC is called specialised GAC. Note that, by default template GAC is meant
when neither the template GAC nor the specialised GAC are explicitly mentioned.

The GAC needs to support all kinds of components that are usable in cyber-physical
systems ranging from humanoid to medical to industrial robots, because it needs to

37

38 Cyber-Physical Systems Software Development

be generic. This range of target systems requires specific support, which is discussed
in the first section of this chapter. Available component models and accompanying
frameworks that could be used to implement the GAC are discussed in the following
section. Next, the GAC design approach and implementation are described. Followed
by a use-case showing that the GAC is usable to implement control software for an
actual cyber-physical system. The chapter ends with a discussion, looking back on
the design, implementation and the use-case of the GAC.

4.1 Requirements

The requirements for the GAC, which are based on the properties described above
and on the required GAC features that are discussed in Section 3.3, are elaborated in
this section. The requirements of the way of working either focus on reusability and
flexibility, i.e. the requirements that make sure that the GAC indeed is generic, or on
the required features that define its behavior and functionality. The list is structured
using the MoSCoW method (Clegg and Barker, 1994).

Requirement 1: The GAC must be reusable

The generic architecture component is supposed to be generic; ideally it needs to be
usable for all kinds of cyber-physical system implementations. Therefore, both the
template GAC and the specialised GAC must be reusable.

The template GAC needs to be applicable to multiple situations and design require-
ments, so the specialised GACs also become applicable to a wide range of situations.

On the other hand, the specialised GACs themselves also need to be reusable, so they
can be used to implement multiple parts of the system. For example configuration
support makes it possible to fine-tune a specialised loop-controller GAC, making it
possible to control both the left-hand and the right-hand parts of a symmetrical sys-
tem using the same specialised GAC.

Requirement 2: The GAC must support the CPC methodology

As indicated in Section 3.2.1, the CPC methodology must be used as a base meta-
model type. By using the CPC meta-model for the template GAC model, it becomes
possible to easily connect specialised GACs to other GACs (or other components) that
are based on the CPC meta-model.

Requirement 3: The GAC must be real-time capable

The GAC needs to be able to operate at different real-time levels, in order to make it
suitable as a component implementation of all kinds of use cases. Loop-controller
GACs need to provide hard real-time support to implement the controller code. On
the other hand, supervisory or sequence controllers do not require the strict hard
real-time guarantees. However, communication between GACs with different real-
time levels is required. For example, soft real-time decision-making GACs typically
are used to assign tasks to the hard real-time control loop GACs.

Support for multiple real-time levels is also required within the GAC itself, this pre-

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 39

vents excessive, superfluous resource usage (and thus the unnecessary waste of these
resources). Control related parts of a GAC, that must perform their calculations peri-
odically to prevent unstable dynamic behaviour, need to run with hard real-time guar-
antees. Whereas command handlers for example suffice with soft real-time guaran-
tees, as it does not matter if a command is interpreted slightly later than it was issued.
Flexibility is required, so these real-time levels can be chosen when the specialised
GAC is designed or when it is used to model the control software.

Requirement 4: The GAC must provide means to support safety measures to handle
undesired situations

Even though the model-driven design techniques help with developing correct soft-
ware, safety measures are still required to handle undesired situations. Therefore, the
GAC must provide means to handle safety aspects, like detecting and handling unsafe
situations, on both a local and a global level.

Requirement 5: The GAC must provide means to extend it into a specialised component
implementation

The template GAC must provide means to actually specify its required behaviour, and
thus converting it into a specialised GAC or specialised component. For example, a
loop controller component needs to execute the actual loop controller algorithm, so
the GAC needs to provide means to add this algorithm and to make sure it is executed
periodically.

Therefore, the GAC must provide place holders called hooks. These hooks provide
means to add the actual implementation content or payload of the component. Each
hook provides support for a specific part of the implementation, which are used by
designers to mold the template GAC into specialised GACs. By providing enough of
these hooks, the template GAC can be used to create any desired component. The
actual implementations of these hooks should be optional and allow to be specified in
multiple formats, in order to keep the GAC as generic as possible.

Requirement 5.1: The GAC hooks must support source code

The hook payload needs to be accessible by the software, which is built from source
code. Even when using MDD techniques, the models usually are transformed into
source code when building the application. So the hooks must at least support source
code as their payload.

Requirement 5.2: The GAC hooks should support models

It should be possible to use models as payload for a hook, so the specialised GAC can
be constructed using MDD techniques as well. These models can be easily connected
to the GAC if they are based on the CPC meta-model as well.

Requirement 6: The template GAC must be formal correct

The GACs are used in a variety of situations due to their reusable, flexible nature. They

40 Cyber-Physical Systems Software Development

must function properly in all these situations, so template GAC must be formal correct
to prevent (unexpected) problems, like deadlocks, due to the situation it is used in.

Requirement 6.1: The specialised GAC should be suitable for formal checking

The specialised GAC should also be formal checkable. Implementing a template
GAC into a specialised GAC might introduce new problems that can be detected with
formal verification. Furthermore, if a specialised GAC is formal checkable, it becomes
possible to formally check a complete network of specialised GACs or the complete
control software. This helps finding design errors that occur due to wrongly added
connections between the specialised GACs.

Requirement 7: The GAC must be usable in hierarchical networked situations

It must be possible to use the GAC in a network of other GACs, in which they together
form the control software. Additionally, one or more GACs must be able to provide
the payload of another GAC. With this requirement, a complex GAC can be split into
multiple GACs which together provide the complex behaviour. These simple GACs
could then be (re)used for multiple situations.

4.2 Existing Component Models

Several implementations of cyber-physical software frameworks are available, like
Orocos and ROS, as indicated by Mallet et al. (2010). Most of them make use of some
custom component model, interface or template, which needs to be implemented by
the engineer.

Earlier work on defining, designing and implementing a generic component has been
done by Wijbrans (1993) and Groothuis et al. (2008). As mentioned earlier, this work is
not flexible and reusable enough to design control software for a wide range of cyber-
physical systems, but their design ideas are kept in mind.

4.2.1 BRICS Component Model

The BRICS Component Model (BCM) provides the 5Cs approach (Klotzbücher et al.,
2013). It defines the following 5 concerns (5Cs): Computation, Communication, Co-
ordination, Configuration and Composition. As mentioned earlier, separation of con-
cerns is used throughout this thesis, hence an implementation in the form of the 5Cs
is used for the GAC design. More details of the implementation of the 5Cs in the GAC
design are provided in Section 4.3.1.

4.2.2 Orocos

Orocos (Bruyninckx, 2001) is a framework targeting cyber-physical development, es-
pecially focusing on more complex components like sequence and supervisory con-
trol components.

The Orocos TaskContext, shown in Figure 4.1, provides the basis for an Orocos com-
ponent. A component offers Services through the Operations interface, and requests
them through the OperationCallers. The Flow Ports are used as a data transport mech-
anism between components. At the center of the component, its Execution Engine

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 41

D
a
t
a

F
l
o
w

D
a
t
a

F
l
o
w

Input

Ports
Output

Ports

Provides

Requires

P Plugin

Flow Port

maps to

Scripting Marshalling

P P

Configuration

Interface

Properties

Services

Interface

Dynamic

functions:

C/C++

functions:

OperationCallers

-Callbacks

-Algorithms

- State Charts

- Program

 scripts

Operations

Figure 4.1: Orocos Component Model (Soetens, 2012)

handles the execution of the component, depicted by the gears in the background of
the figure. Each component has a state machine handling the state flow of the com-
ponent. The user is able to add functionality to hooks which are activated upon state
transitions. Orocos provides a real-time scripting environment to program the com-
ponent without modifying its source code, allowing for fast, iterative design cycles.
This only summarizes the main features of the Orocos components, in reality it is a
fairly complex component with lots of other features and possibilities, making it very
flexible for all kinds of situations and requirements.

Using the Orocos component model results in partially real-time software only: The
component itself is real-time, i.e. only deterministic operations are used during the ac-
tual execution. But, the components (basically their OS threads) are being scheduled
by the operating system (OS), which makes it hard to provide hard real-time guarantees
for scheduling the components. Unfortunately, the scheduling behaviour is strongly
dependent on the implementation of the (real-time) operating system.

Over-dimensioned hardware results in proper execution of the soft real-time compon-
ents, like sequence or supervisory control components. However, this solution is un-
suitable for embedded computing platforms unsuitable, so a real-time OS is required.

4.2.3 ROS

ROS (Quigley et al., 2009) is another well-known and widely used robot-control soft-
ware framework. The main focus of ROS is to support code reuse in robotic research
and development.

It provides high-level (supervisory) solutions for message-passing between processes
and package management by providing a publisher-subscribe mechanism. Unfortu-
nately, ROS does not provide a specified component model, it cannot provide real-

42 Cyber-Physical Systems Software Development

time guarantees and ROS only runs on general purpose PCs and operating systems, it
does not support embedded platforms yet.

Although ROS is not hard real-time capable, it is a good framework to stay compat-
ible with, due to the amount of supported (specialistic) sensor and actuator hardware
drivers. These drivers could be used with soft real-time guarantees, in order to provide
the other components their data. This is especially possible for complex sensors, like
cameras or laser range-finders, which are typically used by sequence or supervisory
control components that are soft real-time themselves.

4.2.4 Conclusion

It can be concluded that there is not a suitable component model according to the
requirements of Section 4.1. Therefore a new component model has been designed,
called Generic Architecture Component (GAC), as discussed in the rest of this chapter.

Besides the lack of a suitable component model, there is also a lack of a suitable execu-
tion framework, so a newly designed framework is used for the GAC implementation.
This new framework is called LUNA and its design and implementation details are de-
scribed in Chapter 5.

4.3 Design

The template GAC design is kept simple and light-weight in order to keep it usable
on embedded platforms. Due to the use of MDD techniques, the modelled GAC is
platform independent and easy to connect to the rest of the control software models.
These design choices are a first step to design a reusable GAC as required by Require-
ment 1.

Configuration

Computation

Coordination

S
a
fe

ty

Life-cycle events

Configuration data

Commands

Synchronous

Run once

Asynchronous

Error

Coordination

User defined

Legend

Communication types

Figure 4.2: Design overview of the generic architecture component

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 43

An overview of the GAC design is shown in Figure 4.2. Its functionality is spread over
4 blocks that work together and provide the GAC implementation. Furthermore, the
GAC is split into three execution layers with their own properties:

• Run-once layer
The blocks in this layer are executed once, during the initialization of the GAC.

• Synchronous layer
The blocks in this layer are periodically executed.

• Asynchronous layer
The blocks in this layer are executed when an event is received and needs to be
processed.

The blocks of the GAC are placed in one or more of these layers, depending on their
requirements.

There are multiple communication flows between the blocks and between blocks
within the GAC and from blocks to the outside of the GAC. These communication
flows are split into three types. Two of these types are predefined by the template
GAC, consisting of coordination and error communications. The third type represent
optional user definable communication flows as required for specialised GACs, i.e. the
I/O communication from/to the outside of the component.

Most incoming communication flows, from outside of the GAC, go through the Safety
block to their destination. Incoming data from the outside of the GAC is considered
to be unsafe, the safety block checks the data for errors, unexpected or undesired val-
ues and handles these signals as necessary. The data that leaves the safety block is
considered to be safe. Data leaving the GAC also go through the safety block, in this
case the block also checks if the data is correct, for example within an expected or al-
lowed range. If this is not the case, it might indicate that the GAC is malfunctioning
and requires attention to solve the problem.

Details on the separation of concerns within the GAC are provided in the next section.
Each of these separations and how it is influencing the GAC design is discussed in the
following sections.

4.3.1 Separation of Concerns

As depicted in Figure 4.2, the design of the GAC is split into 4 separate blocks, each
of these blocks handles a separate, specific part of the GAC. Three of the blocks are
directly derived from the 5Cs approach of the BRICS component model. Although the
Communication and Composition concerns are not directly visible in the figure, they
also influence the GAC.

The 5Cs are used in the GAC design in the following way:

• The Computation block of the GAC provides means for the execution of the (con-
trol) algorithm, i.e. the payload of the GAC.

44 Cyber-Physical Systems Software Development

• The Coordination block handles the life-cycle state machine to synchronise the
activities, or states, of the component.

• Configuration block of the GAC provides the values of the specialised compon-
ent parameters, increasing the reusability of the template GACs and the special-
ised GACs.

• The Communication concern takes care of the communication by adding ports
to the component, thereby providing communication with the environment of
the component.

• The Composition concern is implemented indirectly with the different possibil-
ities of creating an architectural network of GACs.

Safety is not one of the original 5 concerns, but its role is important enough to have the
it included in a prominent place in the GAC design. Because for this prominent place,
a designer is likely to notice the block and make use of it, resulting in specialised GACs
with a high(er) quality.

The roles within the GAC of each of these concerns (including safety) are further dis-
cussed in the following sections.

4.3.2 Computation

The computation block takes care of the computation of GAC payload. It needs to
provide means to add user-defined computation hooks, one for each life-cycle state, as
required by Requirement 5. The implementation of these computation hooks can be
provided by the designer as CPC-based models or as direct source code, as specified by
requirements 5.1 and 5.2. The implementation of the hook that belongs to the active
state needs to be executed by the coordination block.

It is also possible to use other GACs as a (partial) implementation of the computation
block, this is explained further when the composition concern is explained. The com-
putation block is placed in both the synchronous and the asynchronous layers in order
to make the computation both event based and periodic.

4.3.3 Coordination

The coordination block takes care of the life-cycle and user-defined state machines of
the GAC. The life-cycle state machine is used to provide the regular life cycle of the
GAC, whereas the user-defined state machine allows for custom, more fine-grained
component states.

The block is able to receive commands, which are basically events, from other GACs to
control the active life-cycle state of the GAC. For example, a task-planning GAC keeps
track of the long-term goals of the system and controls the other GACs to obtain these
goals using events. Changes of the active state are communicated to the computation
block, which changes its behaviour accordingly by using the correct hook for the active
state. The coordination block is placed in the asynchronous execution layer, as it is
completely event based.

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 45

The life-cycle state machine that exists in the coordination block is shown in Fig-
ure 4.3. Event names are written in capitals and the state names are written bold,
in the figure as well as in the text. The figure is kept simple and only has a few states
and transitions.

Init InitReady Run Stop

Error

INIT_READY RUN STOP

ERROR

STOP_READY

ERROR_READY

Figure 4.3: GAC life-cycle state machine diagram

The GAC starts in the Init state. This state is meant to perform initializations of the
GAC and homing actions of the mechanical system. When the initialization is finished
and the INIT_READY event is issued, the GAC enters the InitReady state. This state
is used to synchronise all GACs: After all have finished their initializations, the RUN
event is sent by a supervising component to enter the Run state of the GACs. In this
state the actual functionality of the GAC is activated. The Run state can be exited either
in the normal way, by stopping the GAC using the STOP event, or due to an unrecov-
erable error, which is signalled by the ERROR event. Depending on the event, either
the Stop state or the Error state is entered respectively. Both states have a ready event:
STOP_READY and ERROR_READY . When the finalization actions, that are required to
properly halt the GAC, are finished the according event is sent.

This simple state machine does not provide means to restart the GAC when it is
stopped or an unrecoverable error is encountered, the Run state is only exited when
the software is shutting down. Restarting the component is not desirable as it does not
seem to make sense to halt a component whilst it is (actively) steering the mechanical
part of a cyber-physical system. It also does not make sense from a software point of
view: The architectural network of components suddenly is (temporarily) incomplete,
resulting in problems when interaction is required with the halted component. An ob-
vious reason to halt the component though, is to change its behaviour, for example to
swap it with another loop-control component due to a change of the active task of the
cyber-physical system. It is suggested to implement such situations by implementing
the user-defined state machine and to use its states to select the correct control law
for a specific situation. This prevents stopping the component, and thus stopping to
steer a mechanical component of the cyber-physical system. Additionally, it keeps the
complexity of the GAC implementation as low as possible.

As mentioned already, the coordination block supports, besides the life-cycle state
machine, an user-defined state machine. The user-defined state machine can be used
by specialised GACs to add custom states for a more fine-grained control of the GAC
life cycles.

46 Cyber-Physical Systems Software Development

4.3.4 Configuration

The configuration block provides means to support configuration parameters of the
specialised GAC. Values for these parameters are provided when the specialised GAC
is used as a component implementation. Currently, the parameters are just set upon
initialization of the GAC, hence the block is placed in the run-once layer, this is done
to keep the GAC as simple as possible.

Additional means to support run-time configuration, can be provided by moving the
block to the asynchronous layer and adding command-based communication. This
makes it possible to send commands to the block in order to reconfigure the GAC
when required. It is even possible to embed the configuration parameter values into
the command, so it is possible to dynamically change the parameters. This might be
convenient for GACs that contain sub-GACs which need to be configured.

4.3.5 Communication

Generalized ports need to be introduced into the GAC to satisfy the communication
concern. They are part of the CPC paradigm, which is therefore needed as modelling
tool of the GAC design. The ports form the interface of each component and define
a sort of communication protocol. This protocol ‘defines’ what kind of data is going
to be available or required by each port. The designer makes use of this protocol by
connecting compatible ports with each other.

The ports of different components need to be connected using channels, so data
can be transferred from one port to another. These channels dictate the data flows
between components ports. By using a suitable channel implementation for each pair
of connected ports, the GAC is able to communicate with other components that are
part of the system architecture. Examples of available communication implementa-
tions are rendezvous channels and buffered channels.

A MDD tool should be able to help selecting the correct channel implementation. Us-
ing the modelled system architecture information, it can decide the correct or optimal
channel implementation.

4.3.6 Composition

The composition concern provides support to use the GAC in a network of GACs. The
GACs can reside next to each other, providing the architectural network for the soft-
ware, or they can be used in a hierarchical network, one or more sub-GACs provide
the functionality of the parent GACs. More details on these possibilities are provided
in this section.

An example of networked GACs is shown in Figure 4.4. The output of the motion pro-
file GAC is a stream of periodically updated set-points, which is connected to the input
of the PID GAC. The PID GAC uses these set-points to calculate its steering signal that
is used to steer its actuator. Note that this example is too simple, in a real situation it
makes no sense to divide this functionality into two GACs.

Usually, the motion profile generator does not require hard real-time guarantees: It

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 47

Motion Profile GAC

S
a
fe

ty

Coordination

Computation
set-point

PID GAC

S
a
fe

ty

Coordination

Computation

steering

Figure 4.4: Example network of two GACs

does not matter whether the most recent set-point is available to the PID controller
all the time. Although they do require to get updated frequently, so it is sufficient
to provide the motion profile with soft real-time guarantees. The PID controller dir-
ectly steers its actuator, these steering signals are required each period time to prevent
problems with the dynamics of the physical system. Hence the PID controller requires
hard real-time guarantees. Whether soft or hard real-time guarantees are required de-
pends on the controllers and the availability of resources. The networked GAC setup
does allow different real-time guarantees for each GAC.

Communication between two GACs with different real-time guarantees requires a buf-
fered channel implementation. This is required to prevent priority degradation of the
GAC with the more strict real-time guarantees. Priority degradation happens when
more strict real-time guarantees are made less strict by another component, because
the GAC with the strict real-time guarantees is forcefully waiting for data coming from
the other component. The buffered channel always has data available, albeit it might
be outdated, which is in contrast with a rendezvous channel that requires both com-
ponents to be ready before communication takes place.

Both GACs of the networked GAC example provide together the control signal for an
actuator. If there are multiple actuators in the cyber-physical system that requires
such a controller, it makes sense to create a single GAC that provides the control signal.
This GAC might reuse both separate GACs as its implementation for the communic-
ation block. Such a GAC is shown in Figure 4.5. The sub-GACs of the loop controller
GAC have a grey background.

An hierarchical network of GACs is shown in the figure: The loop controller GAC con-
tains two sub-GACs, the motion profile and the PID GAC. The implementation of both
sub-GACs (with the grey backgrounds) is the same as in the previous example, but
they are now connected to the coordination block of the loop controller GAC instead
of a supervisory GAC. Together the sub-GACs provide the implementation of the com-
putation block of their parent GAC. The result of the computation block, the control
signal that is provided by the PID sub-GAC, is the output of the loop controller GAC.

48 Cyber-Physical Systems Software Development

Motion Profile GAC

S
a
fe

ty

Coordination

Computation
set-point

PID GAC

S
a
fe

ty

Coordination

Computation

steering

Loop Controller GAC

S
a
fe

ty

Coordination

Computation

Figure 4.5: Example hierarchical GAC setup

4.3.7 Safety

The safety block provides means to monitor the data flows between the GAC and com-
ponents outside the GAC. As mentioned before, safety is considered important, hence
all data signals go through this safety block. A hook is provided to add user-defined
checks depending on the requirements of the specialised GAC. For example it could
check if a data value is within a certain range, or if a value is not changing too fast. If
a problem is detected by these user-defined checks, the safety block is able to modify
the data to correct it.

If correcting the data is not possible or allowed, the safety block is able to send the
ERROR event to the coordination block requesting further action. This event then can
be used to sort out the error on a local level. If this is also not possible, the supervisory
control is notified and the error is handled on a global level, probably by shutting down
the cyber-physical system completely.

The error signals leaving the GAC are also used when the supervisory component
needs to notify the component that a global error occurred and the component needs
to shutdown along with the rest of the cyber-physical system. It can either enter the
STOP state or the ERROR state to shutdown. This depends on the current state of the
component and whether it also has errors or not.

4.3.8 Discussion

Compared to the Orocos component shown in Figure 4.1, the GAC design has similar
blocks: The execution flow is handled in its own block, the Orocos component has its
execution engine and the GAC has the coordination block. Both handle coordination
in separate blocks by providing several life-cycle states, which can be extended and
filled in by the user. The configuration of the component is handled by both compon-
ent models and both handle communication with other components using general-
ized ports.

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 49

Besides these similarities, the GAC design does not provide as many publicly avail-
able interfaces to configure the component or to execute component functionalities
as the Orocos component does. The GAC only supports (custom) commands/events
to change the active (life-cycle) state and user-defined data signals from the outside.
This reduction of support limits the flexibility of the GAC a bit, but thereby improves
the low resource usage and reduces the complexity of the GAC considerably. Addi-
tionally, the GAC provides intrinsic safety handling functionalities, making it possible
to detect problems in the incoming and outgoing signals and it is able to handle these
problems locally or globally. This will improve the likelihood of the component de-
signer thinking about safety issues, as base support is ready to be filled in with the
details.

Because the GAC blocks are strictly separated, it is possible to have multiple real-time
levels within the components and/or its sub-GACs. When looking at the hierarchical
example GAC setup, the PID sub-GAC needs to be hard real-time, as it directly controls
the actuators of the cyber-physical system, while the motion profile sub-GAC does not
require these guarantees. Therefore, it would be plausible to provide soft real-time
guarantees to the motion profile sub-GAC while keeping the hard real-time guarantees
for the main and PID GAC. As mentioned before, the example is too simple to actually
split the GAC into two sub-GACs, especially with different real-time constraints as well,
but for more complex situations this would make sense.

In conclusion, the GAC design is less complex than the Orocos component, mainly
due to the reduced availability of (complex) features. The GAC being a simplification
compared to the Orocos component, results in lower resource usage, which is particu-
lar convenient for (small) embedded computing platforms. The GAC is still complete
enough to be usable as a generic template for cyber-physical system components, as
is shown later on in this chapter. An additional advantage of the GAC is that the lower
amount of available interfaces results in less complex designs and components, which
results in less confusion for (new) engineers.

4.4 Implementation

A first actual implementation is developed by Hoogendijk (2013). It shows that the
ideas behind the GAC are feasible, although more work is required to increase the
quality and to reduce the resource usage before this implementation becomes fully
usable. This GAC implementation is mainly developed using CSP models, so the tem-
plate GAC and its specialised GACs are, for a large part, formal checkable as required
by Requirement 6.

An overview of this GAC implementation is depicted in Figure 4.6. The figure is based
on the design overview of Figure 4.2, but filled in with the implementation details, like
the described hooks, state machines and signals.

The life-cycle state machine is added to the coordination block. Unfortunately, its
implementation is provided in C++ and still needs to be converted to CSP to make the
GAC implementation completely formal verifiable. For situations where additional
states are required, the user-defined FSM hook can be implemented. The user defined

50 Cyber-Physical Systems Software Development

Configuration

Computation

Coordination

S
a
fe

ty

Synchronous

Run once

Asynchronous

INIT_READY

RUN

STOP

Life-cycle FSM

E
rr

o
r

D
e
te

c
to

r

In
it

In
it

 r
e
a
d
y

R
u
n

S
to

p

E
rr

o
r

Configuration

Parameters

Global

Error

User-defined FSM

s
u
b
-G

A
C

ERROR

E
R

R
O

R
_
R

E
A

D
Y

IN
IT

_
R

E
A

D
Y

S
T
A
T
E

S
T
O

P
_
R

E
A

D
Y

ERROR

Event source

Event sink

Configuration parameter

Data signal

Error

Coordination

User defined

Legend

User definable hook

Channel symbols

Communication types

Figure 4.6: Implementation details of the generic architecture component

event channels can be used to send additional user-defined events to the user FSM.
Compared to the design overview, a STATE event is added to notify the computation
block about life-cycle state changes, so it is able to execute the hook belonging to the
active state.

The life-cycle states are represented in the computation, each life-cycle state has its
own hook. Changes in the active state are communicated to the computation block,
which uses this information to periodically execute the correct life-cycle state hook.
The INIT_READY, STOP_READY and ERROR_READY events are used by the computa-
tion block to notify the coordination block that the corresponding state has finished.
For example, after the Init hook has finished its homing procedures it needs to issue
the INIT_READY event.

The configuration block provides a hook to implement the user-defined configura-
tion parameters. These parameters can be used to configure the other hooks, making
the specialised GAC employable on a broad(er) range of situations. The coordination
block typically reads the parameter values from a configuration file and provides them
to the hook to be processed and sends them to the correct locations. As discussed be-
fore, it could be modified to accept configuration parameters to configure the GAC at
run-time.

Compared to the GAC overview, the available user and error communication signals
of the safety block are provided in more detail. The incoming user-defined signals are
either forwarded to the coordination or to the computation block. The error-related

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 51

events are managed by the safety implementation and are sent when a problem arises
that cannot be handled by the safety block alone. The ERROR event channels to and
from the computation block are used to notify the sub-GACs, if present, of system-
wide error situations. They are connected to the Global Error channels of these sub-
GACs. The Error Detector hook is used to define how the user-defined signals need to
be checked.

The GAC implementation provides all kinds of optional support, making the GAC scal-
able and flexible to be used in a wide range of situations. It does not provide a lot of
nice, but complex, features as the Orocos component model though. This can be par-
tially countered by cleverly reusing implemented features in the specialised GAC, as
shown in the next section.

4.5 Usage of the Generic Architecture Component

The Production Cell setup (Groothuis et al., 2009), shown in Figure 4.7, is a scaled
model of an injection molding machine. It is used in this section to demonstrate
how the GAC can be used as a base to design the control software of an actual cyber-
physical system.

The metallic blocks on the belts represent the materials that are transported through
the molding machine. These modelled materials have a piece of iron on their top, so
they can be grabbed by the electromagnets of the setup.

The Production Cell consists of 6 separate Production Cell Units (PCUs). The feeder
belt transports the materials to the molding area and the extraction belt transports
the extracted materials away from the molding area. The molding area consists of
three parts: the feeder unit, the molder unit and the extraction unit. The molder unit
consists of a molding door, against which the material is pressed by the feeder unit, to
simulate the molding process. Afterwards the door opens and the extraction unit grabs
the molded material and places it on the extraction belt. For demonstration purposes
the rotation unit is used to keep the material flow going. It prevents the materials from
falling off the extraction belt, by moving them from the extraction belt onto the feeder
belt again, closing the circle.

Each PCU has one or two actuators that need to be controlled. They all have a motor
that drives the belt, moves the robotic arm or handles opening the molder door. The
extraction unit and the rotation unit have a second actuator in the form of an electro-
magnet, making the PCU able to grab of the piece of material.

Besides the actuators, all PCUs have several of sensors. All motors have an accompa-
nying rotary encoder to measure the rotation of the motor axis. Additionally, each PCU
has one or more ‘material sensors’, consisting of optical switches, to detect whether a
certain position in the area of the PCU is occupied by a piece of material.

Two neighbouring PCUs need to communicate whether it is possible to move the ma-
terial to the next PCU or that there is another piece of material in the way.

52 Cyber-Physical Systems Software Development

Extraction Unit

Extraction Belt

Molder

Unit
Feeder Unit

Feeder Belt

Rotation Unit

(a) Photographic overview showing the Production Cell Units

Motor150W

Gearhead43:1

Encoder

Motor 150W

Gearhead 43:1

Encoder

Al

Motor 70W

Gearhead 18:1

Encoder

M
o
to

r
1
5
0
W

G
e
a
rh

e
a
d

1
5
:1

E
n
c
o
d
e
r

Magnet

M
o
to

r
1
5
0
W

G
e
a
rh

e
a
d

1
5
:1

E
n
c
o
d
e
r

Molder

door
Molder

unit

Extraction Unit

Feeder

Unit

Rotation

Unit

Feeder Belt

Extraction Belt

Material direction

Sensor

Legend

(b) Schematic overview

Figure 4.7: Production Cell setup, a model of a molding machine

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 53

4.5.1 PCU GAC Design Considerations

Due to the similar control requirements of the PCUs, it makes sense to design a re-
usable PCU GAC. As the PCUs do not all have exactly the same amount of sensors and
actuators, there is a trade-off between having one generic PCU GAC, or having a num-
ber of specialised PCU GACs with a specific amount of sensors and actuators. Besides
the obvious advantages of having a single generic PCU GAC, there is a disadvantage
of having unused parts when the GAC is used of a PCU with only one sensor and ac-
tuator, resulting in unnecessary overhead. On the other hand specialised PCU GACs
require more design and maintenance resources.

The GAC PCU component interface design is shown in Figure 4.8. Note that this is
just one of multiple possibilities for the interface. It has periodic input signals for the
encoder and material sensors and periodic output signals for the control values. The
GAC has a user-defined event-based input and output. The OUTGOING_FREE event
is used to get information whether the next neighbour is accepting a piece of material.
The INCOMING_FREE event is issued by the component if it is accepting an incoming
piece of material from the previous neighbour.

sensor

PCU GAC

steering

INCOMING_FREE

encoder

OUTGOING_FREE

Figure 4.8: GAC interface for a Production Cell Unit

Each PCU control algorithm can be implemented by a PID controller that follows the
set-point it received. The motion profile generator periodically provides the set-point
from one of the available motion profiles. The motion profile that is active depends on
the task of the PCU, for example it might need to start the actuator, keep it running or
stop it. The use of a PID and motion profile component is the same as for the examples
of Section 4.3.6.

The focus of the actual design implementation of the PCU GAC can vary between a
modelling point of view or an execution point of view. A focus on a pure modelling
point of view results in a detailed model of the PCU GAC, consisting of a motion pro-
file GAC and a PID GAC for the computation implementation. Focusing on the ex-
ecution point of view results in a minimalistic use of the GAC and the computation
implementation consists of optimised source code.

Modelling Point of View

The PCU GAC implementation focusing on a modelling point of view is shown in Fig-
ure 4.9. It has two sub-GACs which are similar to the ones in Figure 4.4. Although,
in this case the motion profile GAC has a collection of predefined motion profiles of
which one is chosen depending on the required task of the PCU. The configuration

54 Cyber-Physical Systems Software Development

Motion Profile

GAC
set-point

PID GAC

steering

PCU GAC

S
a
fe

ty

Coordination

Computation

sensor

INCOMING_FREE

encoder

OUTGOING_FREE

In
it

In
it

 r
e
a
d
y

R
u
n

S
to

p

E
rr

o
r

User FSM

magnet

motor

Configuration

Figure 4.9: PCU GAC implementation from a modelling point of view

and error detector hooks are not included in the figure to keep it somewhat cleaner,
but they are in use for their regular tasks.

A user-defined event-based signal is added between the computation and the co-
ordination blocks to notify the coordination block when a piece of material passes
a sensor. The event is generated in the Run hook, which uses changes of the sensor
input signals to check whether a piece of material is passing the sensor. The event
belonging to the sensor that is near the end of the material path of the PCU, is used
to notify the user-defined state machine that a piece of material is almost leaving the
PCU. If this is the case and the next neighbour accepts a new piece of material, noth-
ing changes. Otherwise, the user-defined state-machine stops moving the material
until the next PCU is accepting new materials again to prevent materials collisions.
The sensor event representing the situation at the begin of the material path, is used
by the user-defined state machine to generate the INCOMING_FREE event.

The motion profile generator GAC periodically provides its set-points using one of the
available motion profiles, depending on the active task of the PCU GAC. The user-
defined state machine provides the details about the active task, which is determ-
ined using the OUTGOING_FREE event and material positions within the GAC, as de-
scribed above. If the GAC is also controlling an electromagnet, the chosen motion
profile also provides the signal to turn the magnet on, before moving the arm, in order
to actually pick up the piece of material.

The PID GAC uses the set-point and encoder signals to calculate the motor steering
signal to control the actuator (motor) of the PCU. The signal of the electromagnet is
not fed to the PID GAC, but directly used as output.

The quality of the design of the PCU GAC implementation is high when looking from a
modelling point of view: All concerns are nicely separated, reusability of the sub-GACs
is possible and the GAC is modelled in a clear way.

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 55

On the other hand, from an execution point of view this implementation has some
drawbacks. For example: Both sub-GACs have all their concerns nicely separated, as
they have the same implementations as the ones in Figure 4.5. Therefore, the steering
signals are checked twice: once in the sub-GAC safety block and once in the PCU GAC
safety block. The motion profile simply needs provide the set-points for the selected
profile, so it is highly unlikely that this results in any errors, so the set-point signal
does not even require checking at all. The motion profile GAC also does not require
initialisation, therefore its life-cycle state machine contains some unused states, like
the Init and Error states.

Execution Point of View

The PCU GAC implementation using an execution point of view, is shown in Fig-
ure 4.10.

steering

PCU GAC

S
a
fe

ty

Coordination

sensor

INCOMING_FREE

encoder

OUTGOING_FREE

Computation

In
it

In
it

 r
e
a
d
y

R
u
n

S
to

p

E
rr

o
r

Configuration

User FSM

Figure 4.10: PCU GAC implementation from a execution point of view

The main difference between both GAC implementations is that the execution-point-
of-view GAC does not have the sub-GACs anymore. Their functionality is merged with
the hooks of the computation block, resulting in the loss of the separation of con-
cerns and reusability. For example, the motion profile and PID functionality needs
to be remodelled if another GAC requires such functionality as their separate imple-
mentations are merged and cannot used separately anymore. They are also not kept
up-to-date anymore, for this simple case this is not a big problem, but when the GACs
are more complex it is desired to keep them up-to-date with all fixes and improve-
ments. Another disadvantage is that a separation between hard and soft real-time is
not possible anymore, as the merged implementations are intertwined.

Looking from an execution point of view, this implementation indeed is more effi-
cient. There is only one safety block, all life-cycle states are used and less internal
communication is required, as for example the generated set-points are directly avail-

56 Cyber-Physical Systems Software Development

able by the PID part of the implementation, as both the motion profile and the PID
implementation are placed in the Run hook of the PCU GAC.

Design Guidelines

The design guidelines have their main focus on determining the level of detail of the
models. This depends on both the tasks that need to be performed for which the
model is designed and the real-time requirements of the software.

The level of detail of the implementation is somewhere in between the modelling and
execution points of view, depending on the specialised GAC that needs to be created.
For example, the relatively simple PCU GAC can be implemented using more of an
execution point of view than a modelling point of view. However, in a situation where
optimised execution of the component does not play a role and a PID and/or motion
profile GAC is available it saves design effort to reuse the GAC to implement the PCU
GAC.

This guideline should be kept in mind to choose the level of detail:

• For illustrative or educational purposes the modelling point of view should be
used.

• For highly optimised software, e.g. designed for embedded computing plat-
forms, the execution point of view should be used.

• Otherwise it depends on the availability of partial solution for the component
implementation, its complexity and the experience of the designer.

In the end, the closer the level of detail is to the modelling point of view the better, as
this likely prevents problems at later stages.

Note that it is possible to change the level of detail, e.g. by optimising the design by
merging components parts afterwards. Although, it is recommended to only do this
using (automated) optimisation tools and only if it is required to prevent resource us-
age problems on (embedded) computing platforms.

The level of detail depends also on the requirement of real-time guarantees of the
component. The execution-point-of-view of the PCU GAC implementation resulted
in a complete hard real-time implementation. Due to merging most of its functional-
ity into the hooks, it is not possible anymore to use different real-time guarantees, as
the C++ implementation of a hook allows only one type of real-time guarantees. For
example, if a component requires hard real-time guarantees for its control law and soft
real-time guarantees for administrative purposes, it is not possible to merge these two
activities.

4.5.2 Production Cell Architecture Implementation

Besides the 6 PCU GACs, 3 additional components are required for the complete con-
trol software implementation that is able to control the Production Cell:

• Supervisory controller to control the life cycle of the 6 PCU GACs.

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 57

• User Interface to show the Production Cell status to the user and show notifica-
tions when possible.

• Hardware interface to access the sensors and actuators from the software.

The architectural model of the control software, containing all GACs and their com-
position, is shown in Figure 4.11. The hardware interface is not explicitly shown to
keep the figure clear, but it consists of one large I/O handling block to which all sensor
and actuator channels are connected to, similar as the one used in Figure 3.4.

INCOMING_FREE

R
o
ta

tio
n
 U

n
itM

o
ld

e
r

U
n
it s

e
n
s
o
r/a

c
tu

a
to

rs
e
n
s
o
r/

a
c
tu

a
to

r

Feeder Unit Feeder Belt

Extraction BeltExtraction Unit

Supervisory

Control

sensor/actuator

(Graphical) User Interface

sensor/actuator

sensor/actuator sensor/actuator

OUTGOING_FREE

Figure 4.11: Production Cell architecture implementation using GACs

The figure shows a ring-like connection between the 6 PCU GACs composed of
the connected INCOMING_FREE and OUTGOING_FREE event channels of the PCU
GACs. Furthermore, each PCU GAC is connected to its own set of actuators and
sensors, using the hardware interface that is left out.

The supervisory control is connected to the PCUs to send commands to keep their
life cycles synchronised. The error signals are used to notify the supervisory control
about global errors, so it can gracefully shutdown the system when an unrecoverable
problem occurred.

The user interface is connected to the supervisory control. It has a command connec-
tion to send commands to the supervisory control GAC to influence the life cycle of the
system, for example to start it up. The user-data connection is used to provide inform-
ation about the state of the system. In this design, there are no user-data connections
from the PCU GACs to the supervisory control GAC, so the data sent to the user inter-
face cannot consist of actuator or sensor information. If this is required some addi-
tional signals need to be included between the PCU GACs and the supervisory control
GAC.

The error signal is used to notify the user interface about unrecoverable errors, so the
operator is able to handle them manually. Error handling within the control software
is handled locally and globally, as suggested by the template GAC design.

58 Cyber-Physical Systems Software Development

An example of a local problem is when the material is stuck between the molder door
and the wall: The safety block detects this as the accompanying encoder is not show-
ing the expected movement of the door. The safety block of the molder unit puts the
GAC in the Error state by sending the ERROR event, so it shuts down properly to pre-
vent (further) damage. This is an example of a local problem as the rest of the system
can continue to function properly, as it for example still makes sense to keep the ex-
traction belt running to transport processed pieces of material to their storage space,
or in this modelled system to the rotation unit.

Due to this error, the feeder unit will automatically come to a halt as well, as the OUTO-
ING_FREE signal of the molder unit GAC is never indicating that a new piece of ma-
terial is accepted. So a backlog arises at the feeder belt and the Production Cell will
eventually come to a complete standstill in a safe way. For this example it is clear that
supervisory control GAC does not need to shutdown the other PCU GACs, but in other
situations this might be required though.

An example of a global problem is the situation where the extraction arm is struck in
the molding area, blocking the open molding door. The molding unit cannot detect
this problem, as it does not have sensor for this, but it must leave the door open to
prevent damage to the door and extraction arm. The extraction arm is able to detect
the problem by comparing its encoder values and the expected values. When these
values do not match, the supervisory control needs to be notified so it can shutdown
the molding unit. The rest of the system is still able to function properly, although the
backlog will occur in this situation as well.

4.6 Discussion and Conclusions

All GAC requirements defined in Section 4.1 are met:

• It provides several methods, like hooks and configuration support, to provide
means to reuse both the template GAC and its specialised GACs, Requirement 1.

• It makes use of generalized ports for the communication concern as provided
by the CPC methodology, Requirement 2.

• It supports multiple real-time guarantees simultaneously and within a single
component, Requirement 3.

• It has intrinsic safety support and mechanisms to handle safety related situ-
ations either on a local or a global level, Requirement 4.

• It is possible to design many different types of specialised GACs from the tem-
plate GAC using the provided hooks, Requirement 5.

• Formal verification is partially possible as the GAC is developed using CSP mod-
els, Requirement 6. Unfortunately, the life-cycle FSM is not available in CSP, so
complete formal verification is not yet possible.

• It can be used in a hierarchical networks, Requirement 7.

CHAPTER 4. GENERIC ARCHITECTURE COMPONENT 59

In comparison with the earlier implementation of a generic component (Groothuis
et al., 2008), the current GAC design is more flexible and reusable as dictated by Re-
quirement 1. It is usable for a wide range of different types of cyber-physical systems.
The specialised GACs are reusable within a single system itself, or between different
systems, due to the configuration possibilities.

Compared to the Orocos component, the GAC does provide less features and sup-
posedly is thereby less reusable, as a logical result. This reduction of reusability is
counteracted by providing:

• possibilities to add used-defined functionality at multiple locations in the GAC

• support for different real-time guarantees within the GAC

• an intrinsic safety block

These features all increase the (re)usability while keeping the unused functionality
low, as they are likely to be used in all specialised GACs. Last but not least, the low
resource footprint, due to the less complex design of the GAC, makes it more suitable
to use it on embedded computing platforms.

Initial implementations and visual inspections show that the GAC is working as sup-
posed. The Production Cell functions as expected and transports the pieces of mater-
ial properly through the system. Therefore, it can be concluded that the template GAC
is suitable to be used for specialised GACs and these specialised GACs are reusable
to implement different parts of the system by only configuring the components to let
them behave as required for their specific part of the system. Thus it can be concluded
that the GAC indeed is a generic component that can be used to define the system ar-
chitecture and provide an implementation of the control software of a cyber-physical
system.

The design guidelines of Section 4.5.1 provide rules to help determining the level of
detail of the implementation. On the one side is the modelling point of view and on the
other side the execution point of view. It is also discussed that optimising the design
is not recommended unless explicitly required due to the lack of sufficient resources
of the computing platform. If model optimisation is still required, it is recommended
to use tool support for this task as described and discussed by Bezemer et al. (2009).

Efficient usage of the GAC requires that a model-driven design tool is used to aid the
engineer to use the template GAC when designing a specialised GAC. Currently, the
template GAC has its hooks that can be used to add used-defined implementations
for certain aspects of the specialised GAC. These user-defined aspects require addi-
tional data to process, otherwise they are not able to contribute to the overall system.
Adding these user-defined aspects manually defeats the purpose of the GAC and the
way of working. The MDD tool needs to automate these manual tasks to streamline
the design process.

Such a MDD tool is described in Chapter 6, but it does not have integrated support for
GACs yet. GAC support needs to provide means to add implementations to the GAC
hooks, which are used by the code generation to LUNA source code. Such support

60 Cyber-Physical Systems Software Development

needs to be included in order to be able to actually try the way of working in combin-
ation with the GACs. So it can be tested whether their combination is indeed working
nicely or adjustments needs either one need to be performed.

5
LUNA Universal Network Architecture

During the discussion of the way of working, it was stated that an execution framework
is required to reduce the complexity of model-to-code transformations. Such an exe-
cution framework provides the static code forming an execution engine for the model
execution in the application. The GAC is modelled using CSP, so the execution engine
provided by the framework needs to be a CSP based execution engine.

An execution framework that is focusing on control software for cyber-physical sys-
tems requires some additional support. Cyber-physical system software typically re-
quires hard real-time guarantees for its loop controllers in order to obtain correct
dynamical behaviour. Modern systems have multiple computing platforms, CPUs
and/or cores to distribute the control software, opening the possibilities for more
complex control software consisting of more advanced algorithms. The execution
framework needs to support these features as well, in order to make fully use of the
hardware capabilities.

CTC++ (Orlic and Broenink, 2004) is a CSP based library, providing a hard real-time ex-
ecution framework for CSP-based applications. Unfortunately, the CTC++ library has
become outdated, it is not suitable for multi-core platforms, does not provide a proper
hardware abstraction layer and has some other limitations as well. These features are
implemented in the core of a framework, adding them in a later stage requires lots of
effort, being similar to recreate the complete framework. The LUNA Universal Net-
work Architecture (LUNA) framework is designed to overcome these problems and is
built to support the required features from within its core.

Besides providing these platform support features, LUNA is designed while keeping in
mind that a new graphical tool suite (TERRA, Chapter 6) is planned to be developed
to replace gCSP (Jovanović, 2006). Both the framework and the tool suite should be
designed to improve each others functionality by complementing each other.

The next section describes the requirements for LUNA, followed by a discussion about
existing frameworks and how they adhere to these requirements. After that the gen-
eral idea behind LUNA and its implementation are discussed, like threading, the CSP
approach, channels and alternative compositions. Next LUNA is compared with the
other related CSP frameworks, by showing the results of two timing tests and the com-

61

62 Cyber-Physical Systems Software Development

parison with a cyber-physical system implementation, in Section 5.4. This chapter
ends with conclusions on the features, requirements and the performance of LUNA.

5.1 Requirements

The following list contains the requirements to make LUNA a suitable framework to
facilitate the way of working in Chapter 3. The list is structured using the MoSCoW
method (Clegg and Barker, 1994).

Requirement 8: The core functionality of LUNA must be hard real-time

The core of LUNA, the part that is used for hard real-time processes, needs to be de-
terministic, so it is possible to guarantee that deadlines are always met and to determ-
ine the worst case execution times.

Requirement 8.1: The framework should provide a layered real-time approach

Each process should be able to define its real-time level depending on its own require-
ments.

Requirement 9: LUNA must provide a hardware abstraction layer

Such an abstraction layer provides support for core functionalities and makes it target
independent. This requirement is needed to provide the ‘Universal’ in LUNA.

Requirement 9.1: LUNA must support multiple hardware platforms

Each cyber-physical system uses its own hardware platform with its own hardware
functionalities. The framework must provide support to easily add a new platform for
a new cyber-physical system that is being developed.

Requirement 9.2: LUNA must support multiple operating systems

Each platform might use a different operating system (OS), as each operating system
has its own advantages and disadvantages. Each operating system defines things, like
processes, mutexes or timers, differently. The operating system support must provide
means to make these features universally available independent on the underlying
operating system.

Requirement 9.3: LUNA must support multi-thread environments

As mentioned before, threading is especially useful for complex algorithms, like en-
vironment mapping or object recognition. Especially when these algorithms are ex-
ecuted on a multi-core or multi-CPU capable computing platform. Each operating
system provides its own threading support, for example POSIX compatible systems
have the pthreads library to provide this support. The hardware abstraction layer must
provide a single interface for threading support and must provide implementations of
this interface for each supported platform.

Requirement 10: LUNA must provide support for execution engines

However, LUNA should not force the use of the execution engines when the developer
does not want or require it. Preferably, LUNA could even provide basic execution-

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 63

engine support, which can be (re)used by different engines, like a common interface
with a base implementation.

Requirement 10.1: LUNA must not be dependent on any execution engine

It needs to be possible to disable the execution engines completely in situations where
they are not required. In such situations LUNA is still usable, as it provides the hard-
ware abstraction layer and a lot of other functional components.

Requirement 10.2: LUNA must implement a CSP execution engine

As suggested by the way of working, CSP is a good way to develop the architecture of a
cyber-physical system. CSP support is also required by the GAC, as it mainly consists
of CSP models. So LUNA must provide an execution engine that provides the static
code requirements to execute CSP models.

Requirement 11: LUNA should be scalable

All kind of cyber-physical systems need be controlled, so LUNA should be flexible
enough to support these kinds of systems: From big robotic humanoids with lots of
processing resources to small embedded systems with limited computer resources.

Requirement 12: LUNA should provide debugging and tracing support

By providing good debugging and tracing functionality, the applications in develop-
ment can be debugged easily. Additionally, it provides means to detect unexpected be-
haviour of LUNA in the initial stages of implementing a new component, and thereby
helping to improve the quality.

Requirement 12.1: LUNA should provide real-time logging support

Normal logging support is not deterministic, as it uses memory allocations and/or
disk activity to store the logging information. This is disastrous in a hard real-time ex-
ecution environment. Real-time logging functionalities could provide logging support
without violating the (hard) real-time guarantees.

5.2 Existing Solutions

The CTC++ library meets most requirements, as it was designed as an execution en-
gine for control software. However as mentioned before, it does not have threading
support for multi-core target systems, it does not have a complete hardware abstrac-
tion layer but lots of platform dependent support is intertwined with its other features.
It also has a tight integration with the CSP execution engine, so it is not possible to use
the library without being forced to use CSP as well. Therefore, other related frame-
works which could replace the CTC++ library are discussed in this section.

A good candidate is the C++CSP2 library (Brown, 2007) as it already has a multi-
threaded CSP engine available. Unfortunately it is not suitable for hard real-time ap-
plications controlling setups. It actively makes use of exceptions to influence the exe-
cution flow, which makes an application non deterministic. Exceptions are checked at
run-time, by the C++ run-time engine. Because the C++ run-time engine has no notion
of custom context switches, exceptions are considered to be unsafe for usage in hard

64 Cyber-Physical Systems Software Development

real-time setups. Additionally, exceptions cannot be implemented in a deterministic
manner, as they might destroy the timing guarantees of the application. Exceptions in
normal control flow also do not provide priorities which could be set for processes or
groups of processes. This is essential to have hard, soft and non real-time layers in a
design in order to meet the scheduled deadlines of control loops.

Since Java is not hard real-time, for example due to the garbage collector, we did not
look into the Java based libraries, like JCSP (Welch et al., 2007). Although, there is a
new Java virtual machine, called JamaicaVM (aicas, 2012), which claims to be hard
real-time and to support multi-core targets. Nonetheless, JCSP was designed without
hard real-time constraints in mind and it is highly improbable that it is hard real-time
suitable.

There are also non-CSP-based frameworks which might be suitable to include a cus-
tom CSP layer. As described in Section 4.2 the Orocos framework is focused around
its own component model, so lots of functionality of the Orocos framework is for sup-
porting its model. The Orocos components and their execution engine are too re-
source heavy to function as a CSP process, so there is not much support for a CSP
layer or execution engine in the Orocos framework besides the OS abstraction layer.
Hence, it does not make much sense to use Orocos as a basis to implement the CSP
execution engine.

ROS (Quigley et al., 2009) is developed as a message passing system between hardware
and/or components. This could be useful for channels between CSP processes, but the
topics and their subscriptions are too advanced for simple communication between
two CSP processes. Furthermore, ROS does not guarantee that the messages arrive on
time, so it is not able to fulfill real-time requirements.

Both also do not provide possibilities for formal verification methods, therefore it is
impossible to confirm that a complex application, using one of these frameworks, is
deadlock or livelock free according to Dijkstra (1972).

Other frameworks that do not provide real-time support are, RoboFrame, YARP, URBI
and CLARAty as discussed by Lootsma (2008). Due to the lack of real-time support
these frameworks have not be investigated further.

None of the discussed frameworks fulfil the requirements and is thereby suitable for
the way of working and the GAC. Therefore the LUNA framework is developed, al-
though keeping useful aspects of the other framework in mind. The rest of this chapter
described the LUNA architecture and some of its design choices and a comparison
with other related frameworks is provided afterwards.

5.3 LUNA Architecture

LUNA is developed in a modular way, it has components which can be disabled if
they are not required. Furthermore, a component is able to have dependencies on
other components, meaning that the implementation other components is required
for the implementation of the component. Figure 5.1 shows the overview of the LUNA

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 65

others
(timers, timing,

sockets, ...)
Threading

Mutexes,
Semaphores

CSP

OS abstraction

Utilities
(debuging, data
containers, ...)

State Machine

Core
Components

Execution Engine
Components others

Networking
(TCP/IP, ...)

User
Threading

High-level
Components others

Hardware
Interfacing

Device
Drivers

Architecture
abstraction

1

2

3

Figure 5.1: Overview of the LUNA architecture.

components, grouped by different levels. The grey components are not implemented
yet, but are planned for future releases.

The Core Components 1 level contains basic components, mostly consisting of plat-
form supporting components, providing a generic interface for the platform spe-
cific features. OS abstraction components provide interfaces and implementation for
operating-system specific features, like threading, mutexes, timers and timing. At the
moment of writing QNX, Linux and partial Xenomai support is available. The archi-
tecture abstraction components provide support for features that are specific for an ar-
chitecture (or hardware platform), like the support for (digital) input and output (I/O)
possibilities. The other components must make use of these core components to make
use of platform specific features without knowledge of the actual chosen platform or
operating system. Another group of core components are not platform or operating
system abstraction components, but provide low level features like debugging, gen-
eric interfaces and data containers. These are called Utility components.

The next level contains the High-level Components 2 . These components are plat-
form independent as they make use of the functionality of the core components. For
example the Networking component, providing networking functionality and proto-
cols, uses the socket component as platform-dependent glue and provides (high-level)
protocol components.

The Execution Engine Components 3 provide the execution engine support. These
components are used to determine the flow of the application. For example the CSP
execution engine component provides constructs to have a CSP-based execution flow.
The CSP component uses the core components for threading or mutex support. It uses
high-level components like user threading to reduce the number of OS threads to im-
prove the execution speed, and the networking component to implement rendezvous
channels over a network.

Components can be enabled or disabled in the framework, depending on the type of
application one would like to develop. The unused component can be turned off in
order to save resources and use them in other aspects of the application, as is required
by Requirement 11. Since building LUNA is complex due to the component based ap-
proach and the variety of supported platforms, a dedicated build system is provided.

66 Cyber-Physical Systems Software Development

The LUNA build system is heavily based on the OpenWrt build system (OpenWrt de-
veloper group, 2012; Fainelli, 2008).

OpenWrt provides custom firmware, consisting of the Linux kernel, operating system
tools and applications, build from scratch for all kinds of routers. The tools and applic-
ations can be enabled by the users, depending on their needs. The supported routers
have all kinds of different hardware, requiring corresponding driver support. Cross-
compilation techniques are required to build the firmware, as it is not possible to build
it on the routers themselves. This all combined, makes building the firmware a com-
plex task, which is taken care of by the OpenWrt build system. The mentioned features
of OpenWrt match with the needs of LUNA; it also requires support for different hard-
ware, the modularity of components and a final firmware-like result.

The first operating system that is supported by LUNA is QNX (QNX Software Systems,
2012). This is a real-time micro-kernel OS and natively supports hard real-time and
rendezvous operating system communication. Its basic set of features relieved the
development load for the initial implementation of LUNA as it covered several of the
requirements.

Additionally, QNX is Portable Operating System Interface (POSIX) compliant. This is a
collection of standards to maintain compatibility between operating systems. There-
fore, the QNX implementation for LUNA provides POSIX support to LUNA. A lot of
other operating systems are also fully or mostly POSIX compliant, so adding support
for these operating systems does not require much effort. Linux is such an operating
system, it reuses most of the POSIX implementation of the QNX platform.

In a later stage of creating the LUNA implementation, the QNX rendezvous operating
system communication mechanism is replaced with a custom code implementation
as it is not possible to use QNX channels between two user threads that are running
on the same OS thread. More information about QNX channels and their limitations
is provided in Section 5.3.3.

5.3.1 Threading Implementation

LUNA supports OS threads (also called kernel threads) and user threads to be able to
make optimal use of multi-core environments. OS threads are resource-heavy, but are
able to run on different cores and CPUs. User threads on the other hand have a low re-
sources usage, but must use an OS thread as their execution container. A big advantage
of using OS threads is the preemptive capabilities of these type of threads: Their ex-
ecution can be forcefully paused anywhere during their execution, for example when
a thread with a higher priority becomes available. User threads can only be paused
at specified moments, if such a moment is not reached, for example due to complex
algorithm calculations, other user threads on the same OS thread will not get activ-
ated. Reducing the OS thread resource usage by combining them with multiple non-
preemptive user threads, results in a hybrid solution. This adds the multi-core advant-
ages of the OS threads to the user threads while keeping the resource usage reasonably
low.

As the term already implies, the OS threads are provided and maintained by the op-

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 67

erating system. For example, the QNX implementation uses the POSIX thread imple-
mentation and for Windows LUNA would use the Windows Threads. Due to the dif-
ferent implementations, the behaviour of an OS thread might not be the exactly the
same for each platform.

The user threads are implemented and managed by LUNA, using the same principles
as Brown (2007) and Decho Corp. (2012). The main difference is that the LUNA user
threads are not run-time portable to other OS threads, i.e. can be moved to another
core or CPU at run-time. There is no need for it and this will break hard real-time
constraints.

IThreadBlockerIThread

UThread
Container

UScheduler

1 1
Runnable

CSProcess

1

*

UThreadOSThread

1

0

1 0..1

CSP execution engine

User thread

1

1

OS
Scheduler

1

1

OS thread

0 *

Scheduling
mechanism

Execution Engine
Components

Core Components1

3
CSPConstruct

Sequential Parallel Recursion Alternative

Figure 5.2: UML diagram of threads and their related parts.

The architecture of the threading implementation of LUNA is shown in Figure 5.2. The
figure is simplified in order to keep it clear, fully detailed inheritance and usability
figures are available in the generated LUNA documentation. Two of the components
levels of Figure 5.1 are visible, showing the separation of concerns between the thread-
ing component implementation and the CSP execution engine implementation.

UThreadContainer (UTC) and OSThread are two of the available thread types, both
implement the IThread interface. This IThread interface requires a Runnable, which
acts as a container to hold the actual code which will be executed on the thread. The
CSP functionality, described in more detail in the next section, makes use of the Run-
nable to provide the code for the actual CSP implementation.

To make the earlier mentioned hybrid solution work, each OS thread needs its own
scheduler to schedule the user threads. This scheduling mechanism is divided into
two objects:

68 Cyber-Physical Systems Software Development

1. the UTC which handles the actual context switching in order to activate or stop
a user thread.

2. the UScheduler which contains the ready and blocked queues and decides
which user thread is the next to become active.

The UTC also contains a list of UThreads, which are the objects that are contained
by the UTC. The UThread object contains the context of a user thread: the stack, its
size and other related information. Besides this context relation data, it also has a
Runnable providing the code that is executed on the user thread.

The UTC implements the Runnable interface also, so it can be executed on an OS
thread. When the UTC threading mechanism starts, it switches to the first user thread
as a kickstart for the whole process. When the user thread is finished, yields or is ex-
plicitly blocked, the UTC code switches to the next user thread which is ready for exe-
cution. Due to this decision, the scheduling mechanism is not running on a separate
thread, but makes use of the original OS thread, in between the execution of two user
threads.

A separation-of-concerns approach is taken between the CSP implementation and the
threading support they require to be executed on. The CSP processes are indiffer-
ent whether the underlying thread is an OS thread or a user thread, which is a major
advantage when running on multi-core targets. This approach can be taken a step
further in a distributed CSP environment where processes are activated on different
nodes. This will also facilitate deployment, seen from a supervisory control node. Due
to this separation, it is also possible to easily implement other execution engines.

The figure shows that the Sequential, Parallel and Recursion processes are not inher-
iting from CSProcess but from CSPConstruct. The CSPConstruct interface defines the
activate, done and exit functions. CSProcess can be seen as a Runnable container for
CSP: It defines the actual run functionality and context blocking mechanisms. Letting
the processes inherit from CSPConstruct is an optimisation: This way they do not re-
quire context-switches because their functionality is placed in the activate and done
functions, which is executed in the context of its parent respectively child threads. The
Alternative implementation still is a CSProcess, because it might need to wait on one
of its guards to become ready and therefore needs the context blocking functionality
of the CSProcess.

During tests, the number of threads was increased to 10,000 without any problems.
All threads got created initially and they performed their task: increase a number and
print it. After executing its task, each thread was properly shutdown.

5.3.2 LUNA CSP

Since LUNA is component based, it is possible to add another layer on top of the
threading support. Such a layer is the support layer for execution engines, on which
the CSP execution engine is available. As shown in the previous section, it is com-
pletely separated from the threading model, so it will run on any platform that has an
implementation for the threading component.

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 69

Figure 5.3 shows the execution flow of three CSProcess components, being part of this
greater application:

P = Q || R || S
Q = T; U

Process P is a parallel process and has some child processes, Q, R and S. Process Q is
a sequential process and has child processes T and U. Process T is one of these child
processes and it does not have any child processes of its own. A graphical representa-
tion of this application is shown at the left of Figure 5.4.

wait for
all children

parent
done

post run

pre run
activate

all children

child done

Do things/ run body

wait for
next iteration

[activate]

[exit]

P (Parallel)

Q (Sequential)

T (Process)

wait for
child

parent
done

post run

pre run
activate

child

child done

Do things/ run body

choose
next child

has
more children

to activate

[false]

[true]

[activate]

[exit]

wait for
next iteration

do
something

doneparent
done

post run

[activate]

[exit]

pre run
Do things/ run body

wait for
next iteration

from parent to parent

Figure 5.3: Flow diagram showing the conceptual execution flow of a CSProcess.

First, the pre run of all processes is executed, this can be used to initialize the process
just before running the actual semantics of the CSProcess. Next the processes are wait-
ing in wait for next iteration until they are allowed to start their run body. After all pro-
cesses have executed their pre run the application itself is really started, so the pre run

70 Cyber-Physical Systems Software Development

does not have to be deterministic yet. The post run of each process is executed, when
the process is shutdown, normally when the application itself is shutdown. It gives the
processes a chance to clean up the things they initialized in their pre run.

In this example, P will start when it is activated by its parent. Due to the parallel
nature of the process, all children are activated at once. The process will wait until
all of its children are finished before signalling the parent that the process is finished.
Signalling the parent that a process is finished is done by the parent done block.

Process Q is one of the processes that is activated by P. Q will activate only its first
child process and waits for it until it is finished, as Q is a sequential process. If there
are more children available, the next one is activated and so on. T is just a simple code
blob which needs to be executed. At some point in time it is activated by Q, it executes
its code and sends signal back to Q that it is finished. Same goes for Q, when all its
child processes are finished, it sends back a signal to P, telling it is finished.

Due to this behaviour, the CSP constructs are implemented decentralised by the
CSProcesses, instead of implemented by a central scheduler. This results in a simple
generic scheduling mechanism, without any knowledge of the CSP constructs. Unlike
CTC++, which has a scheduler implemented that has knowledge of all CSP constructs
in order to implement them and run the processes in the correct order.

R

*

S

T

U

UThread-

Container1

- Runnable

- list with UThreads

OSThread1

UThread-

Container2 OSThread2

OSThread3UTC3

2

3

4

5

P
*

R

Q

T

US

UThread

CSP-

Construct1

(Q)

(P)

Figure 5.4: Steps to map a CSP model onto OS threads.

CSP processes are able to execute on either OS or user threads, so the designer, or
probably the code generation tool, needs to map the threads on the user and OS
threads. Figure 5.4 shows the required steps to map a CSP model to OS threads. The
example application used earlier is depicted at the left of the figure. Its compositional
hierarchy in a tree form is shown in the middle part of the figure. The MDD tool has to
map the processes onto a mix of OS and user threads using the compositional inform-
ation.

The following steps are required to map the CSP model onto OS threads, as depicted
by the figure:

1. The model tree needs to be extracted from the model. This model-tree contains
the compositional relations between all processes and is used to iterate over all
processes during the code generation phase.

2. The user (or the modelling tool) needs to group processes that require to be

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 71

placed in the same OS thread. Example criteria for could be grouping processes
that heavily rely on communication to each other or it could try to balance the
execution load per thread.

3. Each process is mapped to a UThread object. Except for the compositional pro-
cesses mentioned in the previous section, they are mapped onto CSPConstructs.

4. Groups of UThreads are put in a UThreadContainer (UTC).

5. Each UTC is mapped to an OS thread, so the groups of processes can actually
run in parallel and have preemption capabilities.

It is clear that making good groups of processes will influence the efficiency of the
application, so using an automated tool is recommended (Bezemer et al., 2009).

5.3.3 Channels

As mentioned in the chapter introduction, one of the initial reasons for supporting
QNX was the availability of native rendezvous communication support between QNX
threads. This indeed made it easy to implement channels for the OS threads, but un-
fortunately it is not for the user threads. Two distinct situations of using channels are
shown by Figure 5.5.

OS Thread

User
Thread

User
Thread

OS Thread

User
Thread

User
Thread

2b

2a

OS
Thread

OS
Thread

1

Figure 5.5: Overview of the different channel situations.

Channel 1 is a channel between two OS threads. The QNX rendezvous mechanism can
be used for this channel without problems. Channels 2a and 2b are communication
channels between two user threads.

If in situation 2a one user thread wants to communicate over a rendezvous channel
with the other user thread and the other side is not ready, QNX channel blocks the
thread that wants to communicate. QNX does not know about the LUNA implemented
scheduler and its user threads, so the complete OS thread gets blocked. The other user
thread which also just got blocked, along with the complete OS thread, never becomes
ready anymore and a deadlock occurs. In situation 2b, the OS thread at the right of the
figure could be blocked, resulting in the user thread at the bottom right getting blocked
as well. This is undesired behaviour, which optionally might even lead to deadlocks in
a worst-case scenario.

72 Cyber-Physical Systems Software Development

Communication between user threads on the same OS thread can never make use of
the QNX rendezvous channels and for communication between user threads on two
different OS threads it is undesired. This makes the choice to initially support QNX
becomes less strong. An exception could be made for OS threads with one user thread,
but such situations are undesired since it is more efficient to directly run code on the
OS thread without the user thread, resulting in the channel becoming of type 1 again.

Note that guarded channels are also not supported by QNX, so for this type of chan-
nels a custom implementation is also required. Considering all limitations of the QNX
channels, it is decided to only use custom-built channels in LUNA. This keeps things
simple, as only one channel type needs to be supported.

UnbufferedChannel

ILockableAny2In Out2Any

IChannelOutIChannelIn

Figure 5.6: Diagram showing the channel architecture.

There are multiple channel configurations, it can be buffered or unbuffered (rendez-
vous), it can have one or many input connections and/or it can have one or many out-
put connections. Figure 5.6 shows the architecture of an unbuffered many-to-many
channel implementation. The UnbufferedChannel implementation is interchange-
able with the BufferedChannel variant. The same goes for the Any2In and One2In
implementations, and the Out2Any and Out2One implementations. Due to this ap-
proach, the actual channel configuration is hidden from the processes that use the
channel for their communication. Therefore the processes are able to use the same
interacting method for all channels.

Listing 5.1 shows the pseudocode for writing on a channel. The ILockable interface is
used to gain exclusive access to the channel, in order to make it thread safe. Basically,
there are two options: Either there is a reader (or buffer) waiting (ready) to communic-
ate or not. If the reader is already waiting, the data transfer is performed and the reader
is unblocked so it can be scheduled again by its scheduler when possible. In the situ-
ation that the reader is not available, the writer needs to be added to the ready_list of
the channel, so the channel knows about the writers which are waiting to communic-
ate. This list is ordered on process priority. And at last, the writer needs to be blocked
until a reader is present. A similar set of actions is used for reading the channel, but
the writers are replaced by the readers and vice verse.

The findReadyReaderOrBuffer() method checks if the availability of buffered data. If
this is not the case, it calls the findReadyReader() method to search for a reader which
is ready. The isReaderReady() and findReadyReader() methods are implemented by the
Out2Any block or by a similar block that is used. Depending on the input type of the

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 73

� �
write () {

ILockable . lock ()
i f (isReaderReady ()) {

IReader reader = findReadyReaderOrBuffer ()
t r a n s f e r (writer , reader)
reader . unblockContext ()
ILockable . unlock ()

} else {
setWriterReady (writer)
r e a d y _ l i s t . add(writer)
writer . blockContext (ILockable)

}
}� �
Listing 5.1: Pseudocode showing the channel behaviour for a write action.

channel, the implementation is quite simple when there is only one reader allowed
on the channel or more complex when multiple readers are allowed. The transfer()
method is implemented by the (Un)bufferedChannel and therefore is able to read from
a buffer or from an actual reader depending on the channel type.

LUNA supports communication between two user threads on the same OS thread by a
custom developed rendezvous mechanism. When a thread tries to communicate over
a channel and the other side is not ready, it gets blocked using the IThreadBlocker (see
Figure 5.2). By using the IThreadBlocker interface, the thread type does not matter
since the implementation of this interface is dependent on the thread type. For user
threads, the scheduler puts the current thread on the blocked queue and activates a
context-switch to another user thread which is ready. This way the OS thread is still
running and the user thread is blocked till the channel becomes ready and the sched-
uler activates it. And for OS threads, it uses a semaphore to completely block the OS
thread until the channel is ready.

5.3.4 Alternative

The Alternative is a compositional relation type between two or more processes. It
makes sure that exactly one of its child processes can become active, its other child
processes are skipped. Each child process provides a guard to evaluate whether it can
becomes active. The first child process that is allowed to become active is chosen by
the Alternative. Until then the Alternative is blocking.

As mentioned earlier, the Alternative implementation is based on a CSProcess, be-
cause it might need to wait on its child guards to become ready. This requires the con-
text blocking functionality of the CSProcess. The compositional relation types ‘bor-
row’ the context of the current, active process to evaluate which child needs to be
activated next, for optimisation reasons. Because of the Alternative needs the context
blocking functionality, it cannot just borrow a context and block it. Instead it needs

74 Cyber-Physical Systems Software Development

its own context and therefore cannot get optimised in the same way as the other types
are.

The Alternative architecture is shown in Figure 5.7 for a guarded Process, in this case
a GuardedReader. A the guard of a GuardedReader checks whether communication
over the channel can take place, i.e. the Writer at the other end of the channel needs
to be activated and waiting (blocked) to communicate. A similar structure is used for
the GuardedWriter, but not shown in the figure.

The Alternative is a CSProcess itself and it also has a list of other CSProcesses which
should have their guard object set. The Alternative process uses this list when it is ac-
tivated in order to try to find a process which meets the conditions of its guard, i.e. the
process is allowed to get activated. Note that the guarded reader and writer processes
implement the IGuard interface and have themselves set as their Guard objects. This
is not necessarily required, a separate object is allowed to function as a guard as well.

CSProcess IGuard

Alternative

IReader

IWriter

GuardedReader

ChannelOut

Out2Any

UnbufferedChannel

0

0..11

1 0..1

GuardedReaderAny2AnyChannel

Figure 5.7: Diagram showing the relations for the Alternative architecture.

In the case of channel communication, the Alternative first checks if one of its readers
or writers able to perform the communication without blocking. If this is the case,
the Alternative makes sure the ability to communicate becomes guaranteed. Next,
it performs the communication itself. The Alternative implements this sophisticated
protocol in order to make sure the communication is guaranteed, even when different
threads are part of the communication or some of the processes on the channel are
not guarded.

First a communication scenario is discussed, where a guarded reader gains access on
a channel, but gets blocked when it should actually perform the communication. This
scenario is shown in the sequence diagram of Figure 5.8. The incoming and outgoing
arrows from/to the edges of the figure indicate scheduling activities. Some of the ob-
jects of Figure 5.7 are grouped by the dashed boxes, they are shown in Figure 5.8 as a
single object to keep the figure more clear.

Assume there is an any-to-any channel, which has a writer waiting to communicate (1
in the figure). Next the Alternative is scheduled (2) and it checks if the GuardedReader
is ready for communication, amongst the other of its guarded child processes. The
GuardedReader is only ready if there is a writer or buffer waiting to communicate, so it
checks with the channel. When the GuardedReader indeed is ready, it gets activated by

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 75

Alternative Reader GuardedReader Any2AnyChannel

isReady()

true

isReady()

true

activate()

read()

read()

setWriterReady()

1

2

3

4 blocked!

Writer
(thief)

Figure 5.8: Sequence diagram showing a scenario were a guarded reader incorrectly blocks.

the Alternative so it can be scheduled to actually perform the communication. After
this the Alternative is finished and a context switch takes place.

Unfortunately before the GuardedReader is scheduled, another Reader (thief) is sched-
uled and wants to communicate over the channel (3). As there is a writer present,
communication between the Writer and the (thieving) Reader takes place.

Later, the GuardedReader gets scheduled and tries to perform the communication (4),
but Writer is not available anymore. As a result the GuardedReader get blocked, even
though it gained access to the channel through the Alternative. This behaviour is in-
correct according to the CSP algebra, as the Alternative process can only finish when
one of its guarded child processes gets activated and is able to perform its guarded
task.

The correct and more complex protocol to prevent this erroneous behaviour is shown
in Figure 5.9. In order to be able to describe the protocol completely, the scenario
contains a channel of which both ends are connected to a guarded process, making it
even more complex.

Alternative1 Reader GuardedReader Any2AnyChannel GuardedWriter Alternative2

blocked!

isReady()isReady()

if reader_ready = false
 ready_list.add(gw) false

isReady() isReady()

truetrue
if ready_list.has_items
 channel.lock()

confirm()
confirm()

reconfirm()
reconfirm()

true

transfer()truetrue

activate()

1

2

lock()

(fail)

Figure 5.9: Sequence diagram showing the correct scenario.

76 Cyber-Physical Systems Software Development

Just as in the previous example, the writer registers at the channel, telling that it is
ready to write data (1). There is no reader available yet, so the writer is put in the
ready_list and gets false back as result. Since Alternate2 did not yet find a process
that could be activated, it gets blocked and will try to find a suitable process next time
it gets scheduled again. This is not interesting for the current scenario and is thus
further ignored.

When Alternative1 gets scheduled, it checks whether the GuardedReader is ready or
not (2). Since the ready_list has items on it, the channel is ready for communication.
The channel gets locked, to prevent that other parties are interfering with the commu-
nication protocol.

Due to this lock the Reader fails when it tries to read from the channel, as a result it
gets blocked. This is in contrast with the previous scenario, as Reader was able to read
and steal the promised data. Note that the only possibility where the failing Reader
can get scheduled, is when it is placed on another OS thread than Alternative1. This is
due to the preemptive capabilities of the OS threads.

The rest of the scenario makes sure that the communication between both guarded
processes takes place. When the isReady() request has a positive result, indicating that
the channel is locked, Alternative1 continues the communication. It checks whether
another of its guarded processes has been activated in the meantime, used the same
reconfirm() request that is described next. If this is the case, Alternative1 is finished as
one of its processes got activated and it needs to clean up. If this is not the case, it lock()
itself, preventing other guards taking over the current communication by starting a
new communication sequence.

Before the actual communication takes place, Alternative1 needs to check whether
the GuardedWriter is still ready to write. This is again required due to the preempt-
ive capabilities of OS threads, as it might be possible that Alternate2 found another of
its guarded processes to activate and the GuardedWriter is not available anymore. Al-
ternative1 does not have a direct link to Alternative2, so the confirm() request is used
to forward this check to the channel. The channel forwards the check to Alternate2
with the reconfirm() method via the GuardedWriter.

If the result is positive, the actual communication (data transfer) can take place. In
this scenario, the channel directly performs the transfer of data. This is not necessary,
but is more efficient as it reduces a number of context-switches. A positive response
on the reconfirm() request by Alternative2 results in the communication, so it can ac-
tivate GuardedWriter immediately and finish its execution without getting scheduled.
The same goes for Alternative1, as the communication already took place it can finish
without waiting until GuardedReader gets scheduled and finishes again.

After the data transfer took place, Alternative1 revokes the isReady() requests of its
other guarded processes, since a process was chosen. For this scenario it is probably
unnecessary to activate GuardedReader, since the data transfer is completed already,
but for another (non reader/writer) guarded process it is necessary to actually execute
its run body. Although, the GuardedReader might be used to activate a chain of other
processes, when it is the first process of a Sequential group of processes, and also does

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 77

need to get activated. So to keep things simple, Alternative1 activates GuardedReader
and finishes.

The described alternative sequence of Figure 5.9 has been tested for difference use
cases. Although it is not formally proven, it is believed that this implementation will
satisfy the CSP requirements of the alternative construction.

5.4 Results

This section shows some of the results of the tests performed with the LUNA frame-
work. The tests compare LUNA with other CSP frameworks, to see how the LUNA
implementation performs.

PC/104 FPGA board

USB UTP VGA

x86
CPU FPGA

P
C

I

P
C

I

d
ig

it
a
l
I/
O

Figure 5.10: Overview of the used test setup.

All tests in this section are performed on an embedded PC/104 platform with 600 MHz
x86 CPU as shown in Figure 5.10. It is equipped with an FPGA based digital I/O board
to connect it with actual hardware when required for the test. The QNX results are
obtained using QNX version 6.4.1 and the executable is built with qcc version 4.3.3.
The other results are obtained using Linux version 2.6.23.17 patched with RTAI version
3.6 and gcc version 4.1.2. The same compiler optimisation flag -O2 is used for both
targets.

5.4.1 Context-Switch Speed

A context-switch speed test is performed to get an idea of the efficiency of the LUNA
threading architecture and implementation. A test application is developed to meas-
ure the context-switching speed, consisting of two threads switching 10,000 times. The
execution times were measured and the average time for a single context switch is cal-
culated, as shown in Table 5.1.

Table 5.1: Context-switch speeds for different platforms.

Platform OS thread (µs) User thread(µs)
CTC++ (original) - 4.275
C++CSP2 3.224 3.960
CTC++ QNX 3.213 -
LUNA QNX 3.226 1.569

78 Cyber-Physical Systems Software Development

The CTC++ (original) row shows the test results of the original CTC++ library compiled
for QNX. It is not a complete QNX implementation, only the required parts for the test
are changed to make them work:

• The Stack Pointer (SP) was changed to use the correct field for QNX.

• The _setjmp/_longjmp implementation used when switching to another
user thread. Linux does not save a so-called signal mask by default when ex-
ecuting setjmp and longjmp for a context switch. QNX does and this addi-
tional activity considerably slows down the context switches. Therefore, the ‘_’
versions of setjmp and longjmp are used for the QNX conversion, which do
not store the signal mask.

• The compiler and its flags in order to use the QNX variants and thus making the
comparison more acurate.

• The inclusions of the default Linux headers are replaced with their QNX coun-
terparts.

• Some platform-dependent code did not compile and is not required to be able
to run the tests, so it was removed.

Similar modifications are made to the C++CSP2 library to add QNX support. The
SP modification is not required for C++CSP2. Furthermore as mentioned, the
_setjmp/_longjmp are used for the quick conversion to QNX. The library already
makes use of _longjmp, but it does not make no use of _setjmp. This might in-
dicate that the author of the C++CSP2 library knew about this difference and inten-
ded different behaviour. The QNX implementation for the C++CSP2 library is also not
complete and only the converted parts are tested.

CTC++ QNX (Veldhuijzen, 2009) is an initial attempt to recreate the CTC++ library for
QNX. It was not completely finished, but all parts needed for the commstime bench-
mark are available, so context switching is also available.

LUNA QNX is the new LUNA framework compiled with the QNX platform support
enabled. For other platforms the results will be different, but the same goes for the
other libraries as well.

The OS thread column shows the time it takes to switch between two OS threads. The
user thread column shows the time it takes to switch between two user threads placed
on the same OS thread.

For LUNA it is clear that the OS thread context switches are slower than the user
thread context switches, which is expected and the reason for the availability of user
threads. All three OS thread implementations almost directly invoke the OS scheduler
and therefore have roughly the same context-switch times.

A surprising result is found for C++CSP2: The OS thread context-switch time is sim-
ilar with the user thread time. The user threads are switched by the custom scheduler,
which seems to contain a lot overhead, probably for the CSP implementation. Expec-
ted behaviour is found in the next test, when CSP constructs are executed. In this test

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 79

the custom scheduler gets invoked for the OS threads as well, resulting in an increase
of OS context switch time. In this situation the user threads become much faster than
the OS threads, as expected.

The context-switch time for the LUNA user threads shows that the LUNA context
switches are much faster compared to the others. The LUNA scheduler has a simple
design and implementation, as the actual CSP constructs are in the CSProcess objects
themselves. This approach pays off when purely looking at context-switch speeds.
The next section performs a test that actually runs CSP constructs, showing whether it
also pays off for such a situation as well.

5.4.2 Commstime Benchmark

The commstime benchmark, shown in Figure 5.11, is implemented to get an better
idea of the scheduling overhead. This benchmark passes an imaginary token along
a circular chain of processes. The Prefix process starts the sequence by creating the
token and passing it to the Delta process. The Delta process passes it to the Successor
process and to complete the circle it get passed to the Prefix process. The Delta process
also signals the TimeAnalysis process when it receives the token, making it possible
for TimeAnalysis to measure the time it took to pass the token around. The difference
between this benchmark and the context-switch speed test, is that in this situation a
scheduler is required to activate the correct CSP process depending on the position of
the token.

COMMSTIME*

Prefix Delta

Successor

TimeAnalysiss

Figure 5.11: Model of the commstime benchmark.

Table 5.2 shows the cycle times for the commstime benchmark for different libraries.
LUNA QNX has two values: the first is for the LUNA channel implementation and the
second value for the QNX channel implementation. Note that the QNX channel test
has been done using a proof of concept implementation, as this type of channel has
not been included in LUNA after all. It is remarkable that the QNX channels are slower
than the LUNA channels. This is probably due to the fact the QNX channels always
have an any-to-any configuration and the used LUNA channels one-to-one, result-
ing in more overhead for the QNX channels. Again, a reason not to include the QNX
channels in LUNA, since it does not even provide more efficient channels compared to
the LUNA channel implementation, which was expected on beforehand. The amount
of context-switches of OS threads is unknown, since the actual thread switching is

80 Cyber-Physical Systems Software Development

handled by the OS scheduler having preemption capabilities and there is no interface
to retrieve this information.

Table 5.2: Commtime results of the frameworks/libraries for their supported thread types.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ (original) User 40.76 5 4
C++CSP2 OS 44.59 - 4

User 18.60 4 4
CTC++ QNX OS 57.06 - 4
LUNA QNX OS 28.02 / 34.03 - 4

User 9.34 4 4

The way of working advocates to use MMD tools for software design. Using MMD
techniques would result in a different implementations of the commstime bench-
mark. For example, instead of using code blobs as process implementation, sub-
models are used containing readers, writers and other processes. In this situation the
Successor is implemented using a sequential process having a reader, an increment
and a writer process as its child processes. Note that the token consists of a number
that is incremented each time it is passed around.

The result of the commstime benchmark implementation that is designed with a MDD
tool, is shown in Table 5.3. The number of threads and context-switches clearly is
increased, which is due to the additional processes in the models.

Table 5.3: Commstime results when using MDD tools to implement the benchmark.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ (original) User 88.89 10 6
C++CSP2 OS 12554.95 - +15

User 12896.22 19 +15
CTC++ QNX OS 219.71 - 6
LUNA QNX OS 93.23 / 99.62 - 10

User 29.87 14 10

The implementation of the C++CSP2 test was somewhat different compared to the
other implementations. The C++CSP2 threads are destroyed as soon as their processes
are finished, which is after one cycle. With the optimal implementation this could be
circumvented by adding clever code. With this modelled implementation this is not
possible, due to the design ideas behind the library. Due to this limitation, the C+CSP2
implementation recreates 15 threads each cycle of the token, hence the +15 in the
table. The construction and destruction of new threads generates a lot of overhead,
resulting in the cycle times being about a factor 100 higher.

The table also shows that the close result of the original CTC++ and the CTC++ QNX
libraries in the previous section were accidental. Now the difference is bigger, which is

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 81

expected since the CTC++ QNX library uses OS threads which have much more over-
head compared to the user threads. The optimised channels of the QNX variant prob-
ably compensated for the slow OS threads, which is only possible for the result with
the optimised implementation as it does not have much context switches.

The benchmark results of the user thread implementations of LUNA than the results
of the CTC++ library. The LUNA results are also better than the C++CSP2 results for
both the OS and user thread implementations, when looking at Table 5.2. This is due
to the efficient context-switches, as described in the previous section. The distributed,
simple LUNA scheduler, that is spread over the different CSPConstruct and CSProcess
implementations, seems to pay off.

It is clear that using MDD tools and code generation results in slower code, when com-
paring both tables. This is due to the difference between the modelling and execution
points of view. For simple applications with a few processes it is advisable to manu-
ally create the code, especially for low-resource embedded systems. When creating a
complex application to control a large setup, like a humanoid robot, it saves a lot of
development time to make use of the MMD tools.

5.4.3 Cyber-Physical System Use Case

A LUNA implementation for JIWY (Jovanović et al., 2002) has been developed, to see
whether LUNA is usable for real cyber-physical systems. JIWY is a simple pan-tilt sys-
tem, with 2 motors and 2 encoders to control both degrees of freedom. A joystick is
used to provide set-points to the control algorithm. The control software of this sys-
tem is designed from a modelling point of view and thus requires about 50 context
switches for each period.

The CTC++ library already has an implementation for this setup available. A similar
implementation, compared to the CTC++ one, was made for LUNA to keep the com-
parison fair. Real-time logging functionality was added in order to be able to measure
timing information to be able to compare both implementation.

The timing results of LUNA and the CTC++ implementation are shown in Table 5.4.
The experiments have been performed with 100H z and 1kH z sample frequencies, so
each control loop cycle time should be 10ms and 1ms respectively. As the measure-
ments were performed for about 60 seconds, the 100H z measurements resulted in
about 6,000 samples and the 1 kHz resulted in about 60,000 samples. The processing
time values are found by subtracting the idle time from the cycle time. The idle time is
calculated by measuring the time between the point where the control code is finished
and the point where the timer fires an event for the next cycle.

The hardware of the computing platform has circuitry to fire events at certain inter-
vals, these hardware events are used to implement the available OS timers. Unfortu-
nately, the period between two events is not exactly 1ms, or whatever the resolution
of the timer is. When enough hardware events are gathered the timer fires a software
timing event and updates its waiting time to match the next period. The waiting time
gets updated by increasing it with the configured software period, instead of the ac-
tual time between the current and the previous fired hardware events. This results in

82 Cyber-Physical Systems Software Development

Table 5.4: Timing results of the cyber-physical system implementation.

Frequency Cycle time (ms) Standard Processing
Platform (H z) Mean Min Max dev. (µs) time (µs)
CTC++ (original) 100 11.00 10.90 11.11 14.8 199.0

1000 1.18 0.91 2.10 386.5 174.5
1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX user threads 100 10.00 9.93 11.00 39.6 111.6
1000 1.00 0.80 2.01 35.8 89.3

1000.15 1.00 0.79 1.21 33.2 87.3
LUNA QNX OS threads 100 10.00 9.97 11.00 39.1 214.3

1000 1.00 0.96 2.00 14.4 185.6
1000.15 1.00 0.95 1.05 8.3 190.8

a missing timer event every now and then, as the actual period using the hardware
events is different compared to the configured software period (Charest and Stecher,
2011).

For the 100H z measurements this is neglectable, as it has 10ms periods and once in a
while a 11ms period, which is an error of 10%. But, for the 1kH z measurements the
incorrect period is suddenly 2ms, which is an error of 100%. Both errors are found
in the max cycle time column of the 100H z and 1kH z measurements. Therefore, the
exact period between two events is measured for the testing hardware, and the 1kH z
period is adjusted accordingly. This results in the 1000.15H z rows in the table, which
show much better results compared to the 1000H z rows.

When looking at the original CTC++ implementation, it is seen from the mean time
that the obtained frequency is 90.9H z instead of 100H z. The standard deviation is low,
suggesting that the library is being constant in providing the wrong frequency. Same
goes for the 1kH z measurement of the CTC++ implementation, where a 847.5H z fre-
quency was obtained. For a frequency of 1kH z the standard deviation becomes very
large as well, but this is due to the missed events as described earlier. The 1000.15H z
results show that the missed event problem is indeed solved.

The results show that LUNA performs well within hard real-time boundaries. The
mean values are a good match compared to the used frequencies and a low stand-
ard deviation value shows that the amount of missed deadlines is negligible. The fre-
quency of 1000.15H z indeed solves the maximum cycle times of LUNA being two peri-
ods long. The CTC++ results for the 1000.15H z frequency are slightly better though.
On the other hand, the LUNA results of the adjusted and the 1kH z are not differing
much, besides the high max cycle time value, showing that LUNA is more robust for
all frequencies than the CTC++ library and adjusting frequency is not required to get
reasonable hard real-time properties. But, for setups which needs to be extremely ac-
curate it is important to use adjusted frequencies as: “this can make the difference
between an industrial robot moving smoothly or scratching your car”.

It is also noticeable that the processing times for the LUNA user threads are lower com-
pared to the CTC++ processing times. Suggesting that the overhead is much lower and

CHAPTER 5. LUNA UNIVERSAL NETWORK ARCHITECTURE 83

that more CPU time are available for the control algorithms or other tasks. Even the
LUNA OS threads processing times are comparable with the CTC++ user thread pro-
cessing times.

5.5 Conclusions

LUNA has fast context-switches and the commstime benchmark is faster than the
C++CSP2 and CTC++ implementations. These benchmark results are good but the
main requirement (8), the real-time behaviour of the library, is much more important
when controlling cyber-physical systems. The JIWY implementation shows that LUNA
indeed performs as required. The maximum and minimum cycle time values are close
to the requested cycle time and the standard deviation values are low, showing that the
hard real-time properties of LUNA are good as well. Visual inspection also shows that
JIWY reacts smoothly on the joystick commands.

The choice for QNX is not that obvious anymore when the provided rendezvous chan-
nels are only usable between OS threads. Nonetheless, QNX provides a good platform
to build a real-time framework, there is enough support from the OS to keep imple-
mentation tasks maintainable.

All requirements mentioned in the introduction are met. Requirements 8, 9 and
its sub-requirements are obvious: LUNA is a hard real-time, multi-platform, multi-
threaded framework.

Requirement 11: Scalability, is also met, as early scalability tests showed that having
10,000 processes poses no problem. Furthermore, LUNA is used in Section 4.5 for a
Production Cell implementation, so it is usable to control complexer systems than the
JIWY setup as well.

The CSP execution engine (Requirement 10.2) is the only implemented execution en-
gine at the moment. But Requirement 10.1, to not be dependent on any execution en-
gine, it is met as it is possible to turn it off. In this situation it is possible to still use the
core components and hardware abstraction provided by LUNA. Using the provided in-
terface it is also possible to add other execution engines like a state machine execution
engine (Requirement 10).

Requirement 12, debugging and tracing support is fulfilled. Even though it is not dis-
cussed explicitly, it was used to obtain results like timing properties and the number
of context switches. Like any LUNA component, it is possible to enable the debugging
and/or (real-time) logging components as well. These components provide means for
debugging and tracing the other components as well as the application that is being
developed. It is also possible to send the debug and trace information over a (local)
network to the development PC, in order to have run-time analysis or to store it for
off-line analysis. Especially logging the activation of processes is interesting, as this
provides valuable timing information, like the cycle time of a control loop or the jitter
during execution. It is also usable to follow the execution of the application by monit-
oring the states (running, ready, blocked, finished) of the processes.

The logger is able to fulfil hard real-time guarantees (Requirement 12.1) if required. It

84 Cyber-Physical Systems Software Development

has predefined buffers to store the debug information and only when there is idle CPU
time available, it sends the buffered content over the network freeing up the buffer for
new data.

As mentioned earlier, both Orocos and ROS provide interesting features for supervis-
ory and sequential controller solutions, so it would be a waste of development re-
sources to (re)implement such features for the LUNA framework. Therefore an in-
tegrating method between LUNA and these frameworks is desired in order to be able
to use the nice features of all frameworks. As a starting point, it might be possible to
reuse and extend earlier integration work (Smits and Bruyninckx, 2011).

6
Twente Embedded Real-time Robotic

Application

The way of working suggests that understanding and maintainability of models is
increased by using a graphical editor and accompanying tools. Such a collection
of related tools is also known as tool suite. The design and implementation of the
Twente Embedded Real-time Robotic Application (TERRA) tool suite is described in
this chapter. Most of its features are based on the feature descriptions for tools to sup-
port the way of working as discussed in Section 3.2.

TERRA is designed around the CPC and derived meta-models. The TERRA tool suite
supports designing architecture and CSP models and it integrates external, non-
TERRA related, tools to access other model types as well. Additionally, the TERRA tools
provide means to use the models for formal verification, source code generation and
(co-)simulation.

TERRA is developed because the existing gCSP tool (Jovanović et al., 2004) has not
the quality that is needed to follow the way of working or implement the GAC model.
The gCSP models are not based on an explicit meta-model, which should be the case
according to the way of working. Furthermore, its stability get lower when designed
models are getting larger: Models of the size of the GAC are nearly impossible to draw
without problems.

This chapter starts with a discussion on related work of meta-models followed by a dis-
cussion of the available tools that provide support for CSP models. Use-cases of meta-
models within the TERRA tool suite are shown next, followed by the implementation
details of these meta-models. Next, the use-cases and the TERRA tools that provide
their support are discussed further. After that an evaluation of the TERRA tool suite is
provided, showing some insights of actual uses of the tool suite and pointing out the
problems that were found. The chapter ends with conclusions on the meta-models
and the TERRA tool suite.

6.1 Related Work

First related work on meta-model is explored, followed with a discussion why Eclipse
in combination with EMF and GEF chosen as a basis for TERRA. Related work on tools

85

86 Cyber-Physical Systems Software Development

and frameworks supporting CSP or custom definable meta-models is discussed after-
wards.

6.1.1 Meta-Models

UML diagrams (Object Management Group, 2011) are the de-facto standard for de-
scribing software designs. However, the standards are purely declarative and do not
provide formal semantics. Formalising UML diagrams with CSP (i.e. adding formal se-
mantics in general) is desired, such that livelock and termination checks can be done,
to guarantee the quality of the components.

Varró et al. (2008) discuss a case study on model-to-model transformation from UML
activity diagrams to CSP, whereby multiple transformation solutions and tools are
evaluated. The authors divide the solutions in three categories: pure graph trans-
formations, solutions with control structures and solutions based on a host frame-
work / language. The presented (target) CSP meta-model resembles an Abstract Syn-
tax Tree (AST) for CSP grammar, where programming language concepts (e.g. Proces-
sAssignment) are mixed with CSP concepts. Since the meta-model is more concerned
with storing a CSP document than with modelling the process composition and com-
munication, this meta-model is considered not suitable for the use cases presented in
this chapter. A rule-based model transformation solution with control is discussed by
Küster (2006), whereby the transformation from UML state charts to CSP is taken as a
case study. However, no explicit CSP meta-model is given.

The BRICS project has defined a new generalised component meta-model, called the
BRICS Component Model (BCM) (Klotzbücher et al., 2013). BCM is loosely based on
the CORBA Component Model (CCM) (Object Management Group, 2006), whereby
components exchange information through ports over connections (i.e. channels).
However using the BCM, concurrency cannot be expressed as explicitly as in CSP (e.g.
sequential execution cannot be specified).

In the DESTECS project, work is being done to define a Structural Operational
Semantics (SOS) of co-simulation of discrete-event (DE) controller schemes and
continuous-time (CT) behaviour of the machine to be controlled (Lausdahl et al.,
2011). An SOS description consists of type definitions describing the static struc-
ture and transition relations for the behaviour of the model (Plotkin, 2004), whereas
a meta-model defined the (strict) semantics of the model itself. The DESTECS SOS
description is not a meta-model, but it serves more or less as a meta-model defining
the behaviour of the model and its possible transitions.

Eclipse and the Eclipse Model Framework (EMF) (Steinberg et al., 2009) are used for
the development of TERRA. Both are used by TERRA as implementation frameworks
as well. Eclipse is mainly written in Java and has therefore, among some other reasons,
excellent multi-platform support, so basing TERRA on Eclipse makes this platform
support available to TERRA as well. EMF is used to design the meta-models that are
present in TERRA and is also used by TERRA itself to add meta-model support to its
tools.

Another important reason to use Eclipse is the tight integration of the Graphical Ec-

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 87

lipse Framework (GEF) (Rubel et al., 2011) with EMF. Using GEF makes it easy to de-
velop a graphical editor based on the meta-models and modelling support of EMF.
There are other Eclipse plug-ins that provide similar support, like GMF and Epsilon,
but GEF is chosen for this support as it provides most freedom to design the graphical
editors. Disadvantage of GEF, compared to some of these other plug-ins, is that lots of
things need to be implemented manually as they are not provided by the framework.

Note that Eclipse, EMF and GMF are also used for the development of the BRICS In-
tegrated Development Environment (BRICS Consortium, 2013). It is a similar devel-
opment tool as TERRA, also towards architectural models with components. However,
it is mainly focused on Orocos components and their deployment.

6.1.2 Tooling

These tools are available to design or use CSP models:

• The FDR2 tool can be used to formally verify CSP models.

• The gCSP tool (Jovanović et al., 2004) can be used to design CSP models.

However, none of these tools provides an explicit meta-model and are therefore not
used for the given reasons in Section 2.4.

Ptolemy II (Ptolemy, 2012) is a heterogeneous modelling and simulation tool that al-
lows to create multi-domain models using different models of computation (e.g. Finite
State Machines or CSP), consisting of actors and directors. Actors are comparable to
sub-models or CSP processes. The directors determine the domain and the model
of computation that is used by the simulator for executing an actor. The interaction
between actors with different models of computation is based on well defined inter-
faces and flow of control rather than model-to-model transformations.

Verhaar (2008) has performed a usability study of Ptolemy II and concludes that a
single general design tool is not able to satisfy all specialistic needs for all disciplines.
Furthermore, it is noted that the CSP domain support of Ptolemy II is insufficient to
be usable. Reinventing the wheel for the sake of using a single design tool, is a waste of
development resources. A development tool should provide means to reuse the spe-
cialistic design features for a certain discipline that are supported of external, third-
party tools instead. Therefore, there does not seem to be a point to use Ptolemy to
implement the required tool suite to support the way of working.

6.2 Meta-Model Usage

Models are at the center of the TERRA tool suite, as shown by Figure 6.1. The figure
uses a CSP model as an example to show the meta-model usage within the TERRA tool
suite, but the same goes for any other type of model. The large open arrows in the
figure indicate interaction of the tools with the model, resulting in all kinds of actions
or transformations.

All TERRA models are conforming to their meta-models, which are in the end derived
from the CPC meta-model. The CPC meta-model is the basis of all other meta-models

88 Cyber-Physical Systems Software Development

CSP

meta-model

External

meta-model

FDR CSP

meta-model

Co-simulation

engine
CSP

model

External

model

(machine

readable)

CSP

C++

code

LUNA

frame-

work

+

conforms to
conforms to

conforms to

M2T

M2C

based on based on

Verification Simulation

Realisation

M2M

External model/

tool support

Other

meta-models

CPC

meta-model

Figure 6.1: TERRA tool suite overview. The bold parts are already available in the current ver-
sion.

as specified by the way of working, with interoperability as the main reason. One or
more other meta-models might serve as a base as well, but still they all are derived
from the CPC meta-model in the end. Whether a meta-model is derived from one
or more other meta-models depends on the situation and whether is functionality is
shared by other meta-models.

As mentioned earlier, the meta-model provides the semantics of the model, which are
used by the tools to interact with the model. Due to the strict usage of the meta-model
semantics by all tools, the models can get processed by these tools without a problem.

Different model transformation paths are shown in the figure. They are have their
own uses and have different results, more information about model transformations
is provided in Section 2.7.

At the right of the figure an external model and its accompanying meta-model, are de-
picted. This model is managed by an external tool, for which TERRA provides support
as is shown in the figure. This support consists of plug-ins, see Figure 6.2, that ex-
tend the meta-models to provide means to store information about an external model

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 89

and add support the tools. Same goes for the co-simulation engine, it does not need
to know how to simulate the external model, only how to interact with the external
tool to let it handle the simulation of the external model. For this to work the external
meta-model needs to conform to the CPC methodology.

As implicitly mentioned above, TERRA is a collection of Eclipse plug-ins, shown in
Figure 6.2. Plug-ins can be added or removed, making TERRA modular. Of course, if
a plug-in which is required by other plug-ins is removed, the other plug-ins become
inactive as well. Each TERRA tool consists of one or more plug-ins. Together all plug-
ins form the TERRA tool suite, providing support to design models and to use them for
various purposes.

Most plug-ins are dependent on one of more other plug-ins, shown by the arrows in
the figure. Dependencies on non-TERRA plug-ins are left-out to prevent the figure
getting even more chaotic. Upon examining the figure, it becomes apparent by the
dependency lines in the figure that TERRA indeed revolves around the meta-models.
The meta-model plug-ins have relatively many dependencies pointing towards them,
especially the cpc.model and csp.model plug-ins.

6.3 Meta-Model Implementation

An EMF meta-model in general consists of elements, as shown in Figure 6.3, to capture
domain concepts (model objects). Each element might contain one or more attributes
and/or operations. Attributes hold data associated with the element, like a string to
store the name of the object, or references to store a relation between this object and
the referenced object. Element operations provide additional functionalities or ways
to use the element. All elements, attributes and operations have a set of properties to
refine them. These properties include a name, type, default value, and so on.

The meta-models are implemented using the Eclipse Model Framework, as explained
in the previous sections. The actual (Java) implementation of the designed meta-
model is obtained through code generation. EMF code generation is able to keep
modified code in place when regenerating the implementation, so non-modelled cus-
tomizations of the implementation are not lost. The framework also provides addi-
tional services that are required for the implemented meta-models, like notification
on model changes or model (de-)serialisation to load/store models.

The meta-model presentation in Eclipse/EMF, see Figure 6.3, is similar to the UML
class diagram presentation. Both methods can be used to create an object oriented
ontology to capture the domain concepts. Concepts like the described elements, at-
tributes and operations can be found in the UML class diagrams, however they are
named classes, variables and methods respectively.

6.3.1 CPC Meta-Model

The CPC meta-model is implemented by thecpc.modelplug-in and provides means
to design CPC-like models. The meta-model provides elements like component (CP-
CComponent), port (CPCPort) and connection (CPCConnection) objects, shown in
Figure 6.4. Note that some object names in the figure start with an ‘I’, this indicates

90 Cyber-Physical Systems Software Development

a
rc

h
.e

d
it

o
r

a
rc

h
.m

o
d

e
l.

e
d

it

b
a
s
e
.e

d
it

o
r

a
rc

h
.m

o
d

e
l

c
p

c
.m

o
d

e
l.

e
d

it

T
E

R
R

A
 s

in
g

le
to

n

c
p

c
.m

o
d

e
l.

v
a
li

d
a
ti

o
n

c
p

c
.m

o
d

e
l

b
a
s
e
.e

d
it

o
r.

c
o
d

e
g

e
n

b
a
s
e
.c

o
d

e
g

e
n

b
a
s
e
.e

p
s
il

o
n

.t
e
m

p
la

te
s

c
p

p
.e

d
it

o
r

c
p

p
.m

o
d

e
l

c
s
p

.c
o
d

e
g

e
n

.c
p

p
.l

u
n

a

c
s
p

.m
o
d

e
l

c
s
p

.e
p

s
il

o
n

.t
e
m

p
la

te
s

c
p

p
.m

o
d

e
l.

e
d

it

c
s
p

.m
o
d

e
l.

e
d

it

c
s
p

.c
o
d

e
g

e
n

.c
s
p

c
s
p

.e
d

it
o
r

c
s
p

.m
o
d

e
l.

v
a
li

d
a
ti

o
n

x
x
s
im

.e
d

it
o
r

x
x
s
im

.m
o
d

e
l.

e
d

it

x
x
s
im

.m
o
d

e
l

x
x
s
im

.t
ra

n
s
fo

rm
.x

m
l.

to
.c

s
p

m

C
o
d

e

G
e
n

e
r
a
ti

o
n

E
p

s
il
o
n

T
e
m

p
la

te
s

A
r
c
h

it
e
c
tu

r
e

M
o
d

e
l

B
a
s
e
 M

o
d

e
l

C
S

P

M
o
d

e
l

2
0
-s

im
 M

o
d

e
l

C
+

+

M
o
d

e
l

T
E
R

R
A

S
u

p
p

o
r
t

Figure 6.2: Overview of all TERRA plug-ins and their dependencies. (The figure is generated
using the source code of TERRA, as it was on the moment of writing.)

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 91

Elements

Attributes
Attribute Properties

Operations

Figure 6.3: Meta-model terminology (applied on the CSP meta-model).

that the object is an interface that must be implemented by the object. There is no dis-
tinction made between regular and interface objects in the remained of this chapter.

The core CPC meta-model are also shown on the left side of Figure 6.5, Sec-
tion 6.3.2, showing the inheriting relation between the CPC and CSP meta-models.
All meta-models that use the CPC meta-model, directly or indirectly via other meta-
models, add more domain specific features to the CPC elements. In BRICS the
CPC meta-model is presented as another layer of abstraction, i.e. as a meta-meta-
model (Klotzbücher et al., 2013). The inheritance relation between the TERRA meta-
models is stronger than the regular conforms to relation between meta-model and its
meta-meta-model. This strong inheritance relation of the TERRA meta-models makes
it easier to create tools that are compliant with multiple meta-models, as these tools
can rely on the CPC basis of the other meta-models.

ICPCComponent

parent

...

CPCPort

CPCRelation

CPCConnection CPCDiagram

ICPCContainerObject

CPCModel
sub-model

0..1
parent

links
0..1

objects
*1

link

...

ports

container

1

1

*

2

relatedObjects

<
<
d
e
r
i
v
e
d
>
>

2..*

Figure 6.4: Class diagram showing the CPC meta-model details

The CPCComponent element provides the base for components. Most other com-
ponent elements extend this CPCComponent element and add specific details. Even
CPCPort implements ICPCComponent, as each port is seen as a component, which
implements a generic port.

92 Cyber-Physical Systems Software Development

A similar construction is used for relations. The CPCRelation defines that two or more
components are related. The actual type of relation that is shared between the objects,
is defined by elements that extend the relation element. For example, the CPCConnec-
tion element defines a data exchanging relation between components.

Multiple nested levels of components need to be supported to create hierarchical
models, e.g. components can contain sub-components. For this purpose the meta-
model provides a specialised container element called ICPCContainerObject. This
element is used by other elements to provide support for containing other objects. For
example, the CPCDiagram element implements the ICPCContainerObject element to
contain all of its components, ports and connections. The CPCModel implements this
interface to store its contained ports. The CPCModel element has a sub-model at-
tribute, which can be used to define a sub-model diagram that can be used to further
specify the component in a hierarchical manner.

Note that Figure 6.4 and the explanation in this section are incomplete, only the CPC-
related meta-model elements are discussed. The meta-model serves as the base for
other meta-models, so additional elements, e.g. to store additional properties into,
are included in this meta-model in order to make them available to all other TERRA
meta-models. Their explanation is left out to keep the CPC meta-model explanation
from becoming too long and too complex. Furthermore these elements are really in-
teresting for the scope of this thesis.

6.3.2 CSP Meta-Model

The CSP meta-model, implemented by the csp.model plug-in, extends the CPC
meta-model by adding CSP domain specific elements, shown by Figure 6.5. Together,
these elements implement an explicit meta-model for Hoare’s CSP algebra.

The CSP meta-model provides compositional meta-model elements, which are di-
vided into a CompositionalObject, a CompositionalRelation and a Compositional-
Group element. The CompositionalObject (extended CPCComponent) is used to spe-
cify that the component has a compositional relation to another CompositionalOb-
ject. CompositionalRelations extend the CPCRelation element and are used to add
details of this compositional relation. For example, the type attribute defines the type
of the compositional relation, some of possibilities are parallel, sequential or altern-
ative relation types. The CompositionalGroups are used to group the relation objects,
with the same type, into so called compositional groups. These group elements are
extending the CompositionalObject, so it is possible to hierarchically define compos-
itional relations between compositional groups (and objects) as well.

Additionally, the CSP meta-model provides the CSPChannel element. It is an extended
version of CPCConnection defining either a rendezvous or a buffered CSP channel.
The additional attribute provides the means to optionally specify the channel buffer
size.

The relation between the CSP constructs, in machine-readable form, and their rep-
resenting meta-model elements is shown in Table 6.1. The CSP meta-model supports
all regular CSP constructs required to define processes and the communication flow

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 93

CSPModel

CSPCompositionalGroup

groupedRelations

CSPCompositionalObject

relations

guardExpression

2

0..*

CSPCompositionalRelation

compositionalObjects

group

type 0..1

1..*

ICPCComponent

CPCRelation

CPC Meta-Model CSP Meta-Model

parent

...

relatedObjects2..*
<<d

eri
ved

>>

CSPWriterCSPReader

port

variable

CSPPortVariableProcess

CPCConnection
ports

<
<
d
e
r
i
v
e
d
>
> CSPChannel

bufferSize

CPCModel
sub-model

Figure 6.5: Partial CSP meta-model, showing the relation with the CPC meta-model elements
and the CSP compositional elements.

between them. The elements of the meta-model are also depicted in Figure 6.5 show-
ing their relations and interactions.

CSPModel and CSPCompositionalGroup are both used to define a CSP process. CSP-
Model is used to provide means to add sub-models to the design and CSPCompos-
itionalGroup is used to define a group of processes sharing the same compositional
relation type. In CSP there is no difference between them, as a ‘sub-model’ is also a
group of processes since CSP does not have a notion of sub-models. CSPReader and
CSPWriter are two specialised processes that interact with their given channel.

The compositional relation between two processes is defined by the CSPComposition-
alRelation element. The type attribute defines the relation type of the processes. CSP
processes that are part of an alternative compositional relation, require guard con-
structs. These are provided by a guard expression that is contained in the process
object. The evaluation of the expression has either a positive or negative result. The
guard expression is optional for the CSPReader and CSPWriter processes that are part
of an alternative relation. If it is not provided a channel guard is used, which uses the
channel to determine whether data can be read or written and this whether the pro-

94 Cyber-Physical Systems Software Development

Table 6.1: List of CSP constructs that have corresponding CSP meta-model elements.

CSP construct meta-model element attribute(s)
p = ... CSPModel

CSPCompositionalGroup groupedRelations: relations that are grouped
channel c CSPChannel ports: two connected ports/processes
datatype <type> CSPVariableDescription name: name of the variable

= <name> type: boolean for Bool, integer for Int, etc.
c !<variable> CSPWriter variable contains data to write on the channel

link: channel to write to
c ?<variable> CSPReader variable contains data read from the channel

link: channel to read from
p ; q CSPCompositionalRelation type = SEQUENTIAL

compositionalObjects: the two related objects
p || q CSPCompositionalRelation type = PARALLEL

compositionalObjects: the two related objects
p [] q CSPCompositionalRelation type = ALTERNATIVE

compositionalObjects: the two related objects
if-statement CSPRecursionProperty expression: true when another loop/iteration is required

cess can be activated, see the LUNA alternative explanation in Section 5.3.4 for more
details.

Recursive constructions are also supported by the meta-model by the CSPRecursion-
Property element. In CSP a recursion, or loop, is written as follows:

p = if (<expression>) then <process> ; p else SKIP

If <expression> evaluates to true, it activates the <process> ; p part. After
<process> is executed, p is activated (again) and a looping behaviour, depending
on <expression>, is implemented. In the CSP meta-model, recursions are imple-
mented as properties, which can be attached to model objects supporting properties,
like CSPCompositionalGroup elements or CSPModel elements.

More modern CSP extensions, like mobile channels (Welch and Barnes, 2008), are cur-
rently not supported by the meta-model. If the need rises, the meta-model can be
extended to support such an additional feature, although the CSP execution engine
needs to provide support for this as well.

6.3.3 Architecture Meta-Model

The architecture meta-model is implemented by the arch.model plug-in. The
meta-model does not add any new elements to the CPC meta-model, as the archi-
tecture models also consist of components that have ports which are connected by
channels for communication purposes. The architecture meta-model is only used to
rename CPC meta-model elements and for future use.

It is developed to be able to design system architectural models, consisting of com-
ponents and connections between them. It hides the underlying CSP paradigm that is
used to be able to execute the architecture models by the code generation. The com-
ponent implementations are typically provided by the GAC-based components. So

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 95

basically the model type enables the use of TERRA for the non-expert users, whereas
the CSP models are meant for the expert users.

6.3.4 Other Meta-Models

TERRA provides support to add new meta-model elements to existing meta-models
via the means of a new plug-in and to integrate support for the additional elements
with the TERRA tools. The modular support of TERRA provides all kinds of hooks in its
tools, which can be used by such a new plug-in to provide support for their additional
meta-model elements. This is currently used to add optional support for C++ code
blobs and external 20-sim models.

The 20-sim plug-ins depend on the C++ plug-ins as depicted in Figure 6.2, for ex-
ample, the 20-sim meta-model plug-in xxsim.model depends on the C++ meta-
model plug-in cpp.model. The C++ meta-model plug-in provides an additional ele-
ments to model C++ code blobs, which can be used to add custom code to the models.
The disadvantage of the C++ model elements is that the user-defined C++ code is not
recognized by the tools, obviously. Therefore, these elements cannot be used for veri-
fication, simulation or other operations.

The 20-sim meta-model is discussed in the next section as if its complete implementa-
tion is provided by the 20-sim plug-ins, ignoring the role of the C++ plug-ins to prevent
confusion. This is also the case for the other 20-sim explanations later in this chapter.

20-sim Meta-Model

Support for the 20-sim meta-model elements, i.e. means to add custom, foreign model
elements to a regular model, and how they integrate with the CPC meta-model is de-
scribed in this section. The semantics of such a foreign element need to be provided
by its own meta-model to comply to the requirements of the way of working.

A 20-sim configuration element is provided to convert the regular CPCModel element
into a 20-sim specific one and to provide a the graphical model figure. The editor
should not allow to modify the model interface, as this is defined by the 20-sim model.

Another element that is provided by the 20-sim meta-model is a 20-sim code block
configuration. It provides a 20-sim specific code block, that is used to contain the glue
code to connect the 20-sim model to the TERRA model. This element is only usable by
the 20-sim model-to-model transformation, described in Section 6.6.2.

6.4 Graphical Model Editor

The architectural (arch.editor plug-in) and CSP (csp.editor plug-in) editors
are both based on the base editor implementation that is provided by the base.
editor plug-in. The editors form the central part TERRA, as they interact with all
other tool types, basically gluing them together forming the TERRA tool suite. As the
base functionality of all editors is provided by the base editor, it can be seen as the very
heart of TERRA.

The base editor provides support for the user interface of the editors: the actual model

96 Cyber-Physical Systems Software Development

view, the preferences, the tool palette, the menu structure and many other parts that
are shared between editors. Additionally, it also handles resource management, like
opening, storing and sharing models or interaction with the other tools. This modu-
lar support that can be used by any plug-in, is provided by so called extension points.
The extension point mechanism is provided by Eclipse and can be used by plug-ins
to allow the registration of certain activities, i.e. extending a certain point of the ap-
plication, hence its name extension point. This extension point mechanism is used
throughout Eclipse and its frameworks, making it modular and extensible.

The base editor, for example, uses extension points to let other TERRA plug-ins register
itself and the activity they provide. One of the extension points that is provided by the
base editor is called provideModelObjectEditor. This extension point is used
by plug-ins that want to register an editor component for a custom model object being
backed by a custom meta-model, see Section 6.3.4 for an example use case. The plug-
in must provide an implementation that is conforming to the interface defined by the
extension point. The base editor is able to access the provided implementation via
this interface and therefore able to interact with plug-ins that were unknown during
the development of the editor. Both the C++ and 20-sim plug-ins use this extension
point to integrate support for their custom meta-model elements into the editors, as
described in Section 6.4.1.

The TERRA editors are tighter integrated with the base editor, due to an inheritance re-
lationship, than the plug-ins and their extension points. Each editor needs to provide
several implementations for abstract parts of the editor, as required by this inheritance
relationship. This is, in contrast to the extension points, obligatory as the editor can-
not function without those implementations. It results in a less flexible and modular
means to extend TERRA compared to the extension points, but it provides means to
add specialised editor support on a much deeper level, which is required to create the
editors for the CSP and architectural models. The lower flexibility is not a real issue, as
developing a new editors is already more complicated than a support plug-in.

The base editor makes use of the Graphical Eclipse Framework (GEF) (Rubel et al.,
2011) to provide the editor user interface components. GEF provides means to design
graphical user interfaces to Eclipse, with its focus on model-based editors that are
backed by an EMF meta-model. Each EMF model element has a GEF counter-part,
a so called edit-part, which provides the editor with a figure that graphically repres-
ents the model element. Upon interactions with the figures or other parts of the user
interface, their edit-parts provide commands to modify the corresponding model ele-
ment.

As mentioned, the editors work together with the other tools. The implementation
and interaction with the models editors of the other TERRA tools are described in the
following sections.

6.4.1 20-sim Editor Integration

20-sim support also requires editor support, besides a new meta-model element and
transformation rules. The 20-sim configuration elements convert a regular CPCModel

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 97

element into a 20-sim model element, shown by the rounded rectangles in Figure 6.6.
The Pan and Tilt model elements use external 20-sim models for their control law
implementations. Their required input values are provided by the HWInput writer
elements, these read the signal values from the hardware and writes it to the channel.
The steering values are sent to the hardware by the HWOutput readers.

PAR_APP

PAR

Tilt

Pan

!
dummy

!
dummy

!
dummy

!
dummy

?
dummy

?
dummy

Tilt

Pan

!
dummy

!
dummy

!
dummy

!
dummy

?
dummy

?
dummy

Figure 6.6: 20-sim model elements used in a software implementation of a simple cyber-
physical system.

The base editor invokes a specialised 20-sim model editor to interact with these 20-
sim model elements. This specialised editor is registered to the 20-sim configura-
tion element, using the provideModelObjectEditor extension point. The ed-
itor provides the custom figure, for example the rounded rectangles for 20-sim model
elements. The 20-sim model interface is defined by the external 20-sim model. There-
fore, the model interface must be locked by the TERRA 20-sim editor to prevent modi-
fications to it. This is currently the only task of the 20-sim model editor, as the imple-
mentation of the element is provided by the 20-sim model-to-model transformation
tool.

The 20-sim code block is handled in a similar way. It also has a custom editor that
locks the element, as the implementation is completely provided by the 20-sim code
generation plug-in.

6.5 Model Validation

The TERRA model validation and code generation tools use the Eclipse framework
called Epsilon (Kolovos et al., 2012). It provides a language called Epsilon Object Lan-
guage (EOL). EOL is used as a base to specify the Epsilon Validation Language (EVL)
and the Epsilon Generation Language (EGL) and several other specialised languages.

98 Cyber-Physical Systems Software Development

The Epsilon framework provides means to used these language specifications for val-
idation and code generation purposes.

The cpc.model.validation and csp.model.validation plug-ins register
the meta-model, for which they provide validation rules, using an extension point
provided by Epsilon validation plug-in. When a the model needs to be validated, the
editor notifies the EMF validation framework. Epsilon is registered to this framework
and when it gets notified, it activates the correct validation rules. This is a set of rules
required to validate the meta-model, backing the model, and all of its inherited meta-
models. For example a CSP model is validated using the CSP and CPC validation rules.

A model is restricted by the meta-model semantics. Hence, alien concepts are not
representable in the meta-model, so the model does not contain related syntactical
errors. The validation rules are needed to verify that the modelled elements are used in
a correct way and that their attribute values are valid. For example, all objects require
a valid name to identify themselves. These names need to be unique, otherwise it is
ambiguous which object is meant by a name.

Depending on the purpose of the model, i.e. how the model is used by the designer, ad-
ditional validation rules are required. These additional validation rules are not defined
by the meta-models, as the purpose of the models depends on the available tools and
the intentions of the designer. For example, the earlier example indicates that the ele-
ment names need to be unique. When the model is created with the purpose to gen-
erate C++ code, the element also need to comply with the C++ syntax of class names,
as the elements are converted into C++ classes. These additional rules can be checked
separately before the tool is activated that requires the additional validation.

6.6 Model Transformations

Epsilon, described in previous section, is also used for model transformations. The Ep-
silon Generation Language (EGL) is used for model-to-text transformations (code gen-
eration) and the Epsilon Transformation Language (ETL) is used for model-to-model
transformations. Currently, TERRA has two model-to-text transformation implement-
ations: machine-readable CSP generation and LUNA C++ code generation. Model-to-
model transformation is used by the 20-sim support plug-in to convert a generated,
intermediate 20-sim model into a CSP model.

6.6.1 Model-to-Text Transformation

Both the code generation plug-ins (csp.codegen.csp and csp.codegen.cpp.
luna) provide the model-to-text transformations for CSP models. Currently, there are
no transformations for the architectural models available yet.

The plug-ins use an extension point to register the transformation and its details, like
source model type and the transformation implementation, to the TERRA code gener-
ation framework (base.codegen). The framework adds a menu entry to the TERRA
code generation menu and makes sure the entry is only available when the supported
source model is active.

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 99

When the menu entry is activated, the framework uses the transformation implement-
ation to start the transformation process. TERRA provides a base implementation for
the code generation process. It invokes Epsilon and provides it with the EGL file that
is required for the actual code generation. Within the EGL environment it is possible
to generate multiple files, as desired by the transformation. In the case of C++ LUNA
code generation, each CSP process has its own source and header file using a directory
structure to make the file names unique.

It is likely that the generated C++ source code is not complete, since not all required
meta-model elements are available yet, like model elements for hardware driver sup-
port. These missing parts still need to be implemented by hand in the C++ code, un-
til support is offered by the TERRA tool suite. The Epsilon code generation engine
simply overwrites all files, so manual changes will get lost each time code is genera-
tion. Therefore, the TERRA transformation tools generate so-called protected regions
that can be used to add custom code into, which is kept intact by Epsilon when the
file is regenerated. This technique is also used for the machine-readable CSP code
generation.

The model-to-text transformation is also used by the 20-sim code generation plug-
in. The code generation tool provides the customModelCodeProvider extension
point, which can be used to provide custom code generators for foreign model ele-
ments.

The TERRA 20-sim code generation makes use of this extension point to provide glue
code to implement the 20-sim code block configuration. This glue code uses the vari-
ables of the readers to update the 20-sim model variables with the correct values. After
all 20-sim variables are updated, the actual 20-sim generated code is executed, so all
(control) algorithms perform their calculations. Their results are stored in the model
variables, which are used to update the variables of the writers and are sent into the
rest of the CSP model using the ports and channels.

6.6.2 Model-to-Model Transformation

Model-to-model transformation is only used by the xxsim.transform.xml.to.
cspm plug-in. It converts an intermediate model file, which is generated by 20-sim
from the source model, into a CSP sub-model implementation for the 20-sim model
element. Together with the 20-sim generated C++ code it provides the implementation
for a TERRA 20-sim model element. The intermediate model is also used by BRIDE for
similar reasons (Brodskiy et al., 2013).

The conversion process iterates over all 20-sim model variables. For each variable it
creates a CSP reader or writer containing the corresponding properties. A 20-sim C++
code element is created which implement the required calls to the 20-sim generated
C++ code. After all variable are processes, all readers are placed in a parallel com-
positional relationship and all writers as well. Both parallel groups and the C++ code
element are placed into a sequential compositional relationship.

The resulting structure is called an I/O Sequential (IOSEQ) pattern (Welch et al., 1993),
which is shown in Figure 6.7 It uses a sequential order to first read the required values

100 Cyber-Physical Systems Software Development

IOSEQ

INS

?
v_position

?
v_in

XXModel

20-sim, C++

OUTS

!
v_out

!
v_corr

Figure 6.7: 20-sim model implementation, using the IOSEQ pattern.

from the incoming ports, shown at the left part of the figure. Then the 20-sim C++
code block uses the input variables to update the 20-sim model variables and executes
the 20-sim C++ code. After the 20-sim code is finished, the results are stored in the
variables at the right part of the figure and they are written the outgoing ports.

6.7 (Co-)Simulation

TERRA does not include a (co-)simulation engine yet, so future plans are described in
this section.

It is possible to develop a modular simulation engine using the same techniques as
described for the previous tools, like the Eclipse extension points. In order to simulate
a certain model, the simulation engine needs to have the simulation rules for the cor-
responding meta-model registered. Simulation rules for a model are basically partial
simulation engines that are invoked by the base simulation engine when required. If
the model contains links to other models, their simulation rules needs to be present as
well. For example, if an architecture model with component implementation provided
by CSP models, the simulation engine needs have simulation rules for both the archi-
tecture and CSP meta-models.

The simulation rules need to define the order of components that needs to be sim-
ulated, using the domain specific details of the meta-model. Channels between the
components and their data need to be updated each simulation step, so they can be
used by the component implementations. Components are simulated, by simulating
their implementations until primitive model elements are encountered that have their
own simulation rules.

An example situation is encountered when an architecture model containing com-
ponents with CSP implementations is simulated. When such a component needs to
be simulated, the simulation engine invokes the CSP simulation rules on its CSP model
implementation. Using the CSP algebra, the simulation order of the CSP processes can
be determined and they are activated as required. This goes on for CSP processes that
have a sub-model implementation, until primitive processes like readers or writers
are encountered. In such cases their simulation rules determine to update a variable

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 101

with a value read from a channel or the write the value of a variable onto the channel,
respectively.

The same goes for external models, although its simulation rules are defined in the
corresponding external tool. Therefore, the TERRA simulation rules of the external
model need to be able to interact with the external tool take let it perform the sim-
ulation of the external model. The interaction consists of providing updated data, a
request to perform a single simulation step and the retrieval of the simulation results.
This is the same approach as discussed by Ni and Broenink (2012).

In the case of an imported 20-sim model, its simulation rules need to grab the data
from the correct CSP variable elements and update the model variables in 20-sim.
After the simulation step, it needs to grab the updated model variables and write them
back onto the corresponding CSP variables to feed the resulting data back into the
model.

A workaround for the lack of a simulation and to prevent damaging the cyber-physical
system due to software problems, is execute the software in a ‘virtual test environ-
ment’. This is possible when software to simulate the plant, sensors, actuators and
other hardware is available, e.g. by using the code generation of 20-sim when the re-
quired models are already designed. All software needs to be combined together with
code to retrieve log information to create the virtual environment. After compilation
of the virtual environment application, it can be executed to obtain the ‘simulation’
results. The quality of these results depends on the accuracy of the plant and other
software parts, but this also goes for the regular simulation results.

6.8 Evaluation

The TERRA tool suite is evaluated in this section. First some usage examples and res-
ults are evaluated and discussed. These include different scenarios and use cases of
the tool suite. After that a more general discussion of TERRA is provided together with
recommendations to improve the tool suite further.

6.8.1 Usage of TERRA

TERRA has been developed to aid the development process of control software of
cyber-physical systems as described by the way of working. It is shown in this sec-
tion that TERRA indeed is usable for these intentions. Masters students have suc-
cessfully been using TERRA for two years now to design control software for the JIWY
setup (Jovanović et al., 2002) for the Real-Time Software Development course. It shows
that TERRA is suitable for novice users to design relatively small models to control
simple cyber-physical systems. TERRA had the first year several ‘hiccups’, ranging
from platform (Windows) compatibility problems to missing features hindering the
students to design their models as they wanted to. The second year when TERRA has
been used, it has been improved considerably and no serious problems have been re-
ported.

TERRA also has been used to design a first CSP implementation of the GAC (Hoogen-
dijk, 2013), more details on this implementation are provided in Section 4.4. Again,

102 Cyber-Physical Systems Software Development

TERRA had several ‘hiccups’, this time mainly due to problems handling large models,
like copy/pasting large parts of the design to reuse them elsewhere or in a new model
version. These problems also have been solved and the initial GAC implementation is
showing promising results. Therefore, it con be concluded that TERRA is suitable as a
development tool suite for researching model structures and implementations.

The initial GAC CSP implementation has been used to actual control a large part of the
Production Cell (Hoogendijk, 2013). This shows that TERRA is also suitable for larger
models, compared to the JIWY setup, to control a cyber-physical system for research
purposes.

The large amount of required CPU time to execute the GAC implementation, proved
to be a problem for the software platform it had to be executed on, hence the partial
implementation. The main reason is that the GAC implementation was a proof-of-
principle, without any optimisations, to show that the ideas behind the GAC were ac-
tually sensible. Nonetheless, it shows that TERRA is a capable model-driven design
tool suite to design the control software for cyber-physical systems.

6.8.2 Discussion

Code generation proved to be useful, especially the protected regions as TERRA does
not yet provide a state-machine model editor to implemented the life-cycle states or
support to interact with the hardware of the Production Cell from with the models.
Same goes for the model validation tools, as such large models cannot be designed at
once, so certain areas are left blank and these validation tools help to find the models
parts that still need to be filled in.

The implementation of the Production Cell also showed that some tools were clearly
missing. No simulation engine was available to test the (intermediate) models of the
GAC and of the Production Cell, as prescribed by the way of working. As a workaround
the generated code was tested on a virtual platform, but this proved to be quite a hassle
and the resulting quality was lacking details to prove the control software should work
on the actual cyber-physical system without breaking it.

Some problems, like dead-lock situations, occurred during the testing phase of the
control software. Due to the size and complexity of the implementation models, it
was for example nearly impossible to find out which parts suffered the dead-locks and
what caused it. The integration of logging support tools to TERRA helps sorting out
these problems, as the obtained information can be used to animate the models as
described by van der Steen et al. (2008). Animating a model provides syntax highlight-
ing and annotations for the models to reflect the current state of the running software.
When the software is paused, due to user interaction or problems like dead-locks, this
information helps showing the problematic areas of the model.

Furthermore, TERRA is missing GAC support. This is mainly due to the GAC imple-
mentation being immature and susceptible of changes. But this lack of support greatly
complicated the implementation of the Production Cell as the GAC implementations
needed to be copy/pasted from the master template and needed to be manually modi-
fied to meet the situations they were used for. An example of the manual modifications

CHAPTER 6. TWENTE EMBEDDED REAL-TIME ROBOTIC APPLICATION 103

is changing the number of custom ports and connecting them to the corresponding
parts of the GAC. These manual changes are tedious and take a lot of time from the
designer. GAC support would be able to handle the required changes depending on
configuration parameters.

6.9 Conclusions

The presented CSP meta-model is suitable to design CSP models that conform to
Hoare’s CSP definition. Section 6.3 describes how the CSP meta-model is derived us-
ing a modular approach by extending the CPC meta-model. The CSP meta-model has
all kinds of use cases, as described in Section 6.6. For example, model-to-text trans-
formations are used to formally verify the CSP model with FDR or to generate code
that can be executed on an embedded target.

The architecture meta-model is suitable to design system architecture models, con-
sisting of the software control components and communication connections between
them. Its amount of available elements is low, so it is easy to get used to. Complex im-
plementations are ‘hidden’ by the specialised GACs and other (pre-build) component
implementation.

The modular nature of the CPC and CSP meta-models makes it possible to support ad-
ditional requirements. Therefore, the CSP meta-model is suitable as a standard for all
kinds of CSP modelling related work. It is recommended to make use of this meta-
model to standardise modelling within the CSP community. Hopefully a standard
meta-model will emerge that is suitable for the needs of the community and helping
to improve interaction between multiple disciplines within the community.

TERRA is an integrated collection of tools to support the way of working. The user
is able to graphically construct a CSP model that conforms to the CSP meta-model.
Model checking on livelock and deadlock conditions is supported by using FDR2.
When satisfied, the CSP model can be transformed into LUNA based code using
model-to-text transformations.

Several use-cases of TERRA are evaluated and discussed. Although it is not completely
and thoroughly researched yet, TERRA is capable to provide a fully working tool suite
that supports the provided way of working until the simulation phase. Future plans are
to include co-simulation as described in sections 6.7, in order to support this phase of
the way of working as well. The missing deployment phase is likely to be implemen-
ted by enabling the Eclipse C++ compilation support and by adding animation and
logging. Including GAC support should improve the overall usability of the way of
working and make the implementation of software for cyber-physical systems easier,
as discussed in Section 6.8.2.

7
Conclusions and Recommendations

Designing control software for modern cyber-physical systems tends to become com-
plex, due to the increasing complexity of these systems. The main objective of this
thesis is to provide guidelines for managing the complexity of the software. These
proposed guidelines provide a structural way of working, which is based on model-
driven design techniques. The way of working aims to provide means to develop a
first-time-right implementation for control software. The models at the basis of the
control software designs, help in the understanding and comprehending the increas-
ing complexity of the cyber-physical systems and their designs.

The way of working is based on a separation of concerns. At a system level this is
provided by using separate components for each (control) part of the software. The
generic architecture component provides a blue-print, or template, for these software
components. Separation of concerns is also applied in the design of the template GAC,
to keep it understandable and usable for specialised GACs.

The LUNA execution framework is designed for the execution of the modelled con-
trol software. Execution engines consist of the static parts to supporting meta-model
definitions, like CSP constructs, a scheduler and hardware support. A tool suite, called
TERRA, provides graphical ways of creating, manipulating and verifying the software
models. Model-to-code transformations are used in the end to transform the models
into software. The software makes use of the execution framework, thereby reducing
the complexity of the transformed code.

7.1 Conclusions and Evaluation

The main objectives of this thesis are described in Section 1.3. Each of these objectives
need to keep the sub-objectives in mind that are described in the sections 1.3.1 to
1.3.3.

7.1.1 Way of Working

The way of working provides steps for the complete software design trajectory. Its con-
cerns are split according the Formalisms, Techniques, Methods and Tools approach,
to make it as generically applicable as possible. For example, it uses meta-models to

105

106 Cyber-Physical Systems Software Development

define the semantics of the models instead of letting it handle by the tools. Also, the
tool implementation is independent of the actual steps, i.e. any set of tools can be used
with the way of working, assuming their functionality is sufficient.

The model design steps of the way of working provide a way to construct the models,
using dynamical plant and control law models for the (loop control) component im-
plementations. The way of working also consists of steps to verify and simulate the
designed software models, thereby increasing the quality of the resulting software.

The way of working starts with designing the control software architecture. The actual
implementation for the architectural components are filled in by later steps. This ap-
proach ensures that the system architecture is matching with the physical system and
its separate concerns. Different component implementations can be used, as long as
their interfaces match with the interface of the architectural model component, e.g.
for design space explorations, simulations or debugging purposes.

The way of working is suitable for a wide range of cyber-physical systems, from com-
plex medical systems to simple research setups. Scalability of the way of working is
provided by making the steps partially optional, i.e. it is not required to perform each
step to the letter. A certain step can be skipped completely, or several steps can be
combined and performed at once, when allowed by the design complexity.

The software design trajectory combines and reuses information from the electronics,
mechanics and controller design trajectories at several steps of the way of working.
This increases the quality of the resulting control software further. Thereby, also im-
proving the chances of a successful first-time-right design, as the control software is
better integrated and matching with the other parts of the cyber-physical system.

7.1.2 Generic Architecture Component

The template GAC that is designed, tightly matches with the way of working and there-
fore increasing its value and usability. Due to its component-based nature, a GAC
implementation is interchangeable with other implementations as long as their in-
terfaces match, as described above. Although in the case of GACs, their functionality
needs to match as well. For example, if a GAC expects certain user-defined commands
to function properly, the replacement GAC needs to expect the same commands, oth-
erwise the software will not execute properly.

The scalability and reusability of the GAC is obtained due to these three main reasons:

• The template GAC does not support all kinds of advanced functionality, like the
Orocos component does. This makes it suitable for embedded applications re-
quiring low-resource usage. On the other hand, advanced functionality is eas-
ily included using the provided hooks, which makes a specialised GAC suitable
for more advanced applications if required. So the complete range of cyber-
physical systems can be controlled using the generic architecture component.

• The variety of provided hooks allows the designer to add any required imple-
mentation to the specialised GAC without modifying the basics of the GAC. This
makes the GAC suitable for any type of control application, ranging from real-

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 107

time loop controllers to complex tasks, like environment mapping, path finding
or task planning.

• The configuration block increases the reusability of specialised GACs, as (small)
differences between two controller components can be applied with the com-
ponent configuration, without the need to designing separate components.

The separation of concerns approach that is applied to the GAC design, helps the de-
signer to use the correct concern for the correct task. The coordination block for ex-
ample contains all decision-making logic in the form of two state machines: a pre-
defined lie-cycle state machine and a user-defined state machine to add more fine-
grained used states to a specialised component. Support to validate incoming and
outgoing signals is provided in the safety block, which has a hook so the user can eas-
ily add the required checks. This increases the probability of preventing unforeseen
situations. As mentioned above, the configuration block increases the reusability of a
components. An additional advantage is that it also helps in preventing design errors,
as components are reused, they are likely to contain less errors that newly designed
components.

All these separate advantages of using the GAC as basis for a component, increase the
chances of success of the first-time-right approach of the way of working.

7.1.3 Framework and Tooling

The LUNA execution framework and the TERRA tool suite provide support to easily
design, validate and test the software models.

The architecture model editor of TERRA tool suite provides support for design space
exploration. Its resulting models typically describe the system architecture of the
cyber-physical system and its software, completely separated from the actual imple-
mentation. Depending on the requirements, for example the model is used for a pro-
duction implementation or used for testing or simulation purposes, the actual imple-
mentation can be chosen.

The component-based approach of LUNA is used to select the framework support that
is required for the application. The LUNA hardware abstraction layer is used to provide
specific support for the used hardware and operating system of different computing
platforms. This all increases the scalability of the framework, making it suitable for the
large range of systems.

The TERRA meta-models have helped a lot in the development of TERRA for various
reasons. Using meta-models forces a developer to think about the model semantics
before actually implementing the TERRA tool suite. Furthermore, due to the strict
model definitions it is clear where and how a tool needs to obtain a required piece of
information. The automatic model validation provided by EMF uses the semantics of
the meta-model to determine the validation rules, so the model designer is indirectly
helped by the meta-models and the meta-models help in preventing software errors.

108 Cyber-Physical Systems Software Development

7.1.4 Relevance

The way of working provides design steps that can be used by others to properly design
the control software for a cyber-physical system. A practical tool implementation is
provided by the combination of the GAC, LUNA and TERRA.

The way of working and accompanying support is supposed to decrease the design
time of the control software and increase the quality of the resulting control software.
Companies can use this work to improve their time-to-market requirement and keep-
ing ahead of their competitors.

The academic community is able to embed the modelling point of view and its
guidelines to teach student how to work structured. This help them understand and
learn the concepts of modelling and its advantages, without struggling to solve all
kinds of problems due to unclear models.

As Verhoef (2009) states

“It seems that the well-known adage ‘Price, Time, Quality - Pick Any Two
for Success’ is still a fact of life”

This seems certainly true, but the way of working and the rest of this work tries to
provide means to be able to ‘pick any three’ though.

7.2 Recommendations

Even though it is concluded that the way of working, in combination with the GAC,
LUNA and TERRA, helps to manage the complexity of the control software, improv-
ing the reusability and providing multiple other advantages, there are still possibilities
to further improve their quality. The recommendations with the greatest impact are
discussed here.

7.2.1 More Evaluation

The way of working completely covers the whole design trajectory and allows for dif-
ferent approaches depending on the requirements of the design of the cyber-physical
system. Several different types of cyber-physical systems are described in Chapter 1,
these are: medical, industrial, small embedded and research-related cyber-physical
systems. The control software for all of these systems can be designed with the way
of working. Nonetheless, this has not yet been explicitly tested for all these types of
cyber-physical systems in different situations.

After the implementation of other use-cases and evaluation of the design process, it
is likely that there are points found to further improve the way of working. When a
more mature version of the way of working is obtained, its design steps also need to
be tightened up in order to get a standardized structure which is better suited to be
generically used.

This further improvement of the way of working results in higher software quality, fur-
ther closing in to the first-time-right ideals. Additionally it also results in faster and

CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 109

more efficient design of the control software, reducing the time-to-market period of
new products.

7.2.2 Model Management

One of the reasons to use component interfaces in architecture models of the cyber-
physical system, is to be able to change the actual implementation depending on the
current usage of the model. With one or two components this is perfectly maintain-
able, but if the number of components is larger, switching all of the implementations
becomes troublesome.

It is convenient to keep track of each set of implementations, so they can be switched
as a whole, as described in Section 3.2.4. The DESTECS project resulted in a model-
management system (Zhang and Broenink, 2013), which is used to be able to keep
track of different versions or implementations of the same model consisting of mul-
tiple files. Such a model-management system can also be used to keep track of a set of
component implementations, suitable for a specific implementation of an architec-
ture model.

Extending the TERRA tool with support for a model-management system improves
the usability of the way of working. It becomes easier to reuse the models for different
use-cases and situations, thereby reducing the time it takes to perform simulations for
example.

7.2.3 Model Optimisation

Even though design guidelines are provided to choose an appropriate level of detail for
the control software, it is still hard to pick the correct level. Using a modelling point of
view is still seen as a sort of ‘utopia’, it is supposed to make the model understandable
with just a single glance. In practice these models are unsuitable for daily usage, due
to the complexity and amount of used model elements.

Model optimisation techniques provide a way to change the level of detail from the
modelling point of view to the execution point of view, or at least much more near this
point of view. This makes the models more usable for practical situations.

Therefore, it is recommended to include these optimisation techniques in a model-
to-model transformation tool (Bezemer et al., 2009; Boode et al., 2013). The model
optimisation tool should be invoked automatically when certain tasks, like code gen-
eration of simulations, are started.

Such a tool could even adapt a third point of view, namely a simulation point of view,
which defines a certain maximum hierarchical depth in the models. This is likely
to improve the simulation quality as the complexity is reduces and the user is not
bothered with the simulation results of the basic (component) implementations.

7.2.4 Simulation Support

The way of working states the importance of simulations and co-simulations. Un-
fortunately TERRA does not provide support for (co-)simulations, so control software

110 Cyber-Physical Systems Software Development

needs to be tested on the physical system. This has the disadvantages and danger that
are discussed in sections 2.8, 3.1.2 and 3.2.4. A work-around for the lack of simula-
tion support is provided in Section 6.7, but it is ‘far from ideal’. Therefore, it is highly
recommended to include simulation support into the TERRA tool suite.

Dankwoord

Als eerste wil ik Jan Broenink bedanken voor zijn begeleiding tijdens mijn promotie.
Ik heb mijn promotie als een geweldige tijd met veel vrijheden ervaren, dit komt zeker
door jouw aanpak in mijn begeleiding. Verder heb ik heel veel gehad aan je frisse blik
tijdens onze discussies, dit gaf veelal een nog beter en aangescherpt resultaat. Naast
jouw formele rol was er ook vaak tijd om te ‘bomen’ over allerlei zaken. Dit leverde een
hoop leuke momenten op, zeker ook omdat onze humor goed op elkaar aansluit.

Stefano Stramigioli wil ik bedanken voor zijn rol als promotor en vakgroepvoorzitter.
Maar ook voor jouw begrip en medeleven tijdens de moeilijke en zware periode thuis.
Het was enorm fijn dat ik toen bij Marieke kon en mocht zijn zonder dat ik onder druk
werd gezet om zo snel mogelijk weer terug aan het werk te moeten zijn!

En natuurlijk kan de rest van de vakgroep niet achter blijven: Mijn leuke tijd is gro-
tendeels mogelijk gemaakt door de fantastische sfeer binnen de groep en tussen de
collega’s. Met name wil ik mijn kamergenoten Rob, Jeroen en Jitendra bedanken voor
de gezelligheid en interessante gespreksonderwerpen. Robert wil ik bedanken voor de
goede samenwerking en al je werk dat je in LUNA gestoken hebt: zonder jou zouden
mijn resultaten er heel anders uitgezien hebben! Ook Carla, Jolanda, Marcel en Ger-
ben bedankt voor jullie ondersteuning, zonder jullie zouden er een hoop dingen niet
of veel later pas gebeuren! Marcel, sorry dat ik telkens maar weer langs kwam om te
vragen of je de nieuwe software op de servers kon installeren of updaten. . .

Graag wil ik van deze mogelijkheid gebruik maken om ook mijn ouders Aad en Riet te
bedanken voor jullie steun en vertrouwen in mij. Dit begon al op de basisschool waar
ik geadviseerd werd om MAVO, misschien HAVO, te gaan doen en jullie vonden dat
ik prima naar het VWO kon (wat ook zo bleek te zijn). Tijdens mijn studie hielden de
adviezen aan om er de vaart in te houden en tijdens mijn promotie om te zien of ik wel
op schema lag. Al was het in dit laatste geval wellicht wat overbodig ;)

Ook hebben jullie mij al vroeg gestimuleerd om verder na te denken over allerhande
zaken. Zo heb ik het ‘kurkentrekker boek’ (Over de werking van de kurketrekker en an-
dere machines, David Macaulay) al op jonge leeftijd gekregen en talloze keren gelezen.
Dit heeft mijn academische blik op de wereld en mijn drang om te willen weten hoe
de vork in de steel zit zeker geholpen!

En tot slot wil ik mijn lieve vrouw Marieke bedanken. Het is fijn dat ik ook thuis kon
kletsen over de inhoudelijke zaken om zo geregeld nieuwe ideeën over mijn onderzoek
te krijgen. Aan het einde van mijn promotie, toen ik druk met dit boekwerk bezig was,
was het fijn dat ik hier mijn tijd in kon stoppen terwijl jij het overgrote deel van de
huishoudelijke taken en onze verhuizing wilde regelen. Maar voornamelijk ben ik heel
blij met onze liefde, de LOL die we vaak hebben (erg fijn is ook dat je mijn nerd-grapjes
begrijpt) en dat je er altijd voor mij bent.

111

Bibliography
aicas (2012), JamaicaVM website.

Bezemer, M. M., M. A. Groothuis and J. F. Broenink (2009), Analysing gCSP Models
Using Runtime and Model Analysis Algorithms, in Communicating Process Archi-
tectures 2009, volume 67, Eds. P. H. Welch, H. W. Roebbers, J. F. Broenink, F. R. M.
Barnes, C. G. Ritson, A. T. Sampson, D. Stiles and B. Vinter, pp. 67 – 88, ISBN 978-1-
60750-065-0, ISSN 1383-7575, doi: 10.3233/978-1-60750-065-0-67.

Bezemer, M. M., M. A. Groothuis and J. F. Broenink (2011a), Way of Working for Em-
bedded Control Software using Model-Driven Development Techniques, in IEEE
ICRA Workshop on Software Development and Integration in Robotics (SDIR VI), Eds.
D. Brugali, C. Schlegel and J. F. Broenink, IEEE, IEEE, pp. 6 – 11.

Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2011b), LUNA: Hard Real-
Time, Multi-Threaded, CSP-Capable Execution Framework, in Communicating Pro-
cess Architectures 2011, Limmerick, volume 68 of Concurrent System Engineering
Series, Eds. P. H. Welch, A. T. Sampson, J. B. Pedersen, J. M. Kerridge, J. F. Broenink
and F. R. M. Barnes, IOS Press, Amsterdam, pp. 157 – 175, ISBN 978-1-60750-773-4,
ISSN 1383-7575, doi: 10.3233/978-1-60750-774-1-157.

Bezemer, M. M., R. J. W. Wilterdink and J. F. Broenink (2012), Design and Use of CSP
Meta-Model for Embedded Control Software Development, in Communicating Pro-
cess Architectures 2012, Dundee, volume 69 of Concurrent System Engineering Series,
Eds. P. H. Welch, F. R. M. Barnes, K. Chalmers, J. B. Pedersen and A. T. Sampson, Open
Channel Publishing, pp. 185 – 199, ISBN 978-0-9565409-5-9.

Bischoff, R., U. Huggenberger and E. Prassler (2011), KUKA youBot - a mobile manip-
ulator for research and education, in Robotics and Automation (ICRA), 2011 IEEE
International Conference on, pp. 1 – 4, ISSN 1050-4729, doi: 10.1109/ICRA.2011.
5980575.

Boode, A. H., H. J. Broersma and J. F. Broenink (2013), Improving the Performance
of Periodic Real-time Processes: a Graph Theoretical Approach, in Communicating
Process Architectures 2013, Eds. P. H. Welch, F. Barnes, J. F. Broenink, K. Chalmers,
J. B. Pedersen and A. T. Sampson.

van Breemen, A. J. N. (2001), Agent-Based Multi-Controller Systems - A design frame-
work for complex control problems, Ph.D. thesis, University of Twente, Enschede,
The Netherlands.

BRICS Consortium (2013), BRIDE - the BRIcs Development Environment, website.

Brodskiy, Y., R. J. W. Wilterdink, S. Stramigioli and J. F. Broenink (2013), Collection of
methods for achieving robust autonomy, Deliverable FP7 BRICS Project (231940)
D6.2, University of Twente.

Broenink, J. F., M. A. Groothuis, P. M. Visser and M. M. Bezemer (2010a), Model-Driven
Robot-Software Design Using Template-Based Target Descriptions, in ICRA 2010
workshop on Innovative Robot Control Architectures for Demanding (Research) Ap-

113

114 Cyber-Physical Systems Software Development

plications, Eds. D. Kubus, K. Nilsson and R. S. Johansson, IEEE, IEEE, pp. 73 – 77.

Broenink, J. F., Y. Ni and M. A. Groothuis (2010b), On Model-driven Design of Robot
Software using Co-simulation, in SIMPAR, Workshop on Simulation Technologies in
the Robot Development Process, Ed. E. Menegatti, ISBN 978-3-00-032863.

Brooks, R. (1986), A robust layered control system for a mobile robot, Robotics and
Automation, IEEE Journal of, vol. 2, no. 1, pp. 14 – 23, ISSN 0882-4967, doi: 10.1109/
jra.1986.1087032.

Brown, N. C. C. (2007), C++CSP2: A Many-to-Many Threading Model for Multicore Ar-
chitectures, in Communicating Process Architectures 2007, Eds. A. A. McEwan, W. Ifill
and P. H. Welch, pp. 183 – 205, ISBN 978-1586037673.

Brugali, D. and P. Scandurra (2009), Component-based robotic engineering (Part I):
Reusable building blocks, Robotics Automation Magazine, IEEE, vol. 16, no. 4, pp.
84 – 96, ISSN 1070-9932, doi: 10.1109/MRA.2009.934837.

Bruyninckx, H. (2001), Open robot control software: the OROCOS project, in Robotics
and Automation (ICRA), 2001. IEEE International Conference on, volume 3, IEEE,
pp. 2523 – 2528, ISBN 0-7803-6578-X, ISSN 1050-4729, doi: 10.1109/ROBOT.2001.
933002.

Buys, K., S. Bellens, W. Decre, R. Smits, E. Scioni, T. de Laet, J. de Schutter and
H. Bruyninckx (2011), Haptic coupling with augmented feedback between two
KUKA Light-Weight Robots and the PR2 robot arms, in Intelligent Robots and Sys-
tems (IROS), 2011 IEEE/RSJ International Conference on, pp. 3031 – 3038, ISSN 2153-
0858, doi: 10.1109/iros.2011.6094925.

Charest, M. and B. Stecher (2011), Tick-tock - Understanding the Neutrino micro ker-
nel’s concept of time, Part II.

Clegg, D. and R. Barker (1994), Case Method Fast-Track: A Rad Approach, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, ISBN 020162432X.

Controllab Products (2012), 20-sim - Graphical modeling and simulation tool.

Cooling, J. (2003), Software Engineering for Real-Time Systems, Pearson Education Ltd,
Essex, England, ISBN 0-201-59620-2.

Dao, P. B. (2011), Safe-guarded multi-agent control for mechatronic systems: imple-
mentation framework and design patterns, Ph.D. thesis, University of Twente, En-
schede.

Decho Corp. (2012), Mordor website.

Dijkstra, E. W. (1972), urls on structured programming, in Structured programming,
Eds. O. J. Dahl, E. W. Dijkstra and C. A. R. Hoare, Academic Press Ltd., London, UK,
chapter 1, pp. 1 – 82, ISBN 0-12-200550-3.

Fainelli, F. (2008), The OpenWrt embedded development framework, Free and Open
source Software Developers’ European Meeting (FOSDEM).

Formal Systems (Europe) Limited (2012), FDR2.

France, R. and B. Rumpe (2007), Model-driven Development of Complex Software: A
Research Roadmap, in 2007 Future of Software Engineering, IEEE Computer Society,

Bibliography 115

Washington, DC, USA, FOSE ’07, pp. 37–54, ISBN 0-7695-2829-5, doi: 10.1109/fose.
2007.14.

Groothuis, M. A., R. M. W. Frijns, J. P. M. Voeten and J. F. Broenink (2009), Con-
current Design of Embedded Control Software, in Proceedings of the 3rd Interna-
tional Workshop on Multi-Paradigm Modeling (MPM2009), volume 21 of Electronic
Communications of the EASST journal, Eds. T. Margaria, J. Padberg, G. Taentzer,
T. Levendovszky, L. Lengyel, G. Karsai and C. Hardebolle, EASST, ECEASST, ISSN
1863-2122.

Groothuis, M. A., J. J. P. van Zuijlen and J. F. Broenink (2008), FPGA based Control of a
Production Cell System, in Communicating Process Architectures 2008,, volume 66
of Concurrent Systems Engineering Series, IOS Press, Amsterdam, pp. 135 – 148, ISBN
978-1-58603-907-3, ISSN 1383-7575, doi: 10.3233/978-1-58603-907-3-135.

Heemels, M. P. M. H. and G. Muller (2006), Boderc: Model-based design of high-tech
systems, Embedded Systems Institute, Eindhoven, The Netherlands, ISBN 90-78679-
01-8.

Hoare, C. A. R. (1985), Communicating Sequential Processes, Prentice-Hall, London,
ISBN 0-131-53271-5.

Hoogendijk, T. A. (2013), Design of a generic software component for embedded control
software using CSP, MSc thesis 014RAM2013, Robotics and Mechatronics, Univer-
sity of Twente.

Isermann, R., J. Schaffnit and S. Sinsel (1999), Hardware-in-the-loop simulation for
the design and testing of engine-control systems, Control Engineering Practice, vol.
7, no. 5, pp. 643 – 653, ISSN 0967-0661, doi: 10.1016/S0967-0661(98)00205-6.

Jovanović, D. S. (2006), Designing dependable process-oriented software, a CSP ap-
proach, Ph.D. thesis, University of Twente, Enschede, The Netherlands.

Jovanović, D. S., G. H. Hilderink and J. F. Broenink (2002), A Communicating Threads
-CT- case study: JIWY, in Communicating Process Architectures 2002, Eds. P. W. J.
Pascoe, P. H. Welch, R. Loader and V. Sunderman, IOS Press, Concurrent Systems
Engineering 60, pp. 321 – 330.

Jovanović, D. S., B. Orlic, G. K. Liet and J. F. Broenink (2004), gCSP: A Graphical Tool for
Designing CSP Systems, in Communicating Process Architectures 2004, volume 62,
Eds. I. East, J. Martin, P. Welch, D. Duce and M. Green, IOS press, Amsterdam, pp.
233 – 252, ISBN 1-58603-458-8, ISSN 1383-7575.

Klotzbücher, M., N. Hochgeschwender, L. Gherardi, H. Bruyninckx, G. K. Kraetz-
schmar, D. Brugali, A. Shakhimardanov, J. Paulus, M. Reckhaus, H. Garcia, D. Faconti
and P. Soetens (2013), The BRICS Component Model: a Model-Based Development
Paradigm For Complex Robotics Software Systems, in Symposium On Applied Com-
puting, ACM, 28.

Kolovos, D., L. Rose and R. Paige (2012), The Epsilon Book.

Kopetz, H. (1997), Real-Time Systems - Design Principles for Distributed Embedded Ap-
plications, Kluwer Academic Publishers, ISBN 0-7923-9894-7.

Küster, J. M. (2006), Definition and validation of model transformations, Software

116 Cyber-Physical Systems Software Development

and Systems Modeling, vol. 5, pp. 233 – 259, ISSN 1619-1366, doi: 10.1007/
s10270-006-0018-8.

Kranenburg-de Lange, D. J. B. A. (2012), Dutch Robotics Strategic Agenda - Analysis,
Roadmap & Outlook, ISBN 978-94-6191-322-7.

Lausdahl, K. G., A. Ribeiro, P. M. Visser, F. N. J. Groen, Y. Ni, J. F. Broenink, A. H. Mader,
J. W. Coleman and P. G. Larsen (2011), D3.3b — Co-simulation Foundations, Tech-
nical report, The DESTECS Project (INFSO-ICT-248134).

Lootsma, M. (2008), Design of the global software structure and controller framework
for the 3TU soccer robot, MSc thesis 014CE2008, University of Twente.

Mallet, A., C. Pasteur, M. Herrb, S. Lemaignan and F. Ingrand (2010), GenoM3: Building
middleware-independent robotic components, in Robotics and Automation (ICRA),
2010 IEEE International Conference on, pp. 4627 – 4632, ISSN 1050-4729, doi: 10.
1109/robot.2010.5509539.

Moody, D. and J. Hillegersberg (2009), Evaluating the Visual Syntax of UML: An Ana-
lysis of the Cognitive Effectiveness of the UML Family of Diagrams, in Software
Language Engineering, volume 5452 of Lecture Notes in Computer Science, Eds.
D. Gašević, R. Lämmel and E. Wyk, Springer Berlin Heidelberg, pp. 16 – 34, ISBN
978-3-642-00433-9, doi: 10.1007/978-3-642-00434-6_3.

Ni, Y. and J. F. Broenink (2012), Hybrid systems modelling and simulation in DESTECS:
A co-simulation approach, in The 2012 European simulation and modelling con-
ference, Ed. M. Klumpp, ETI-The European Technology Insititue, pp. 32 – 36, ISBN
978-90-77381-73-1.

Object Management Group (2006), Lightweight Corba Component Model (LCCM),
OMG, chapter 13.

Object Management Group (2011), Unified Modeling Language (UML), Technical re-
port, OMG.

OpenWrt developer group (2012), OpenWrt website.

Orlic, B. and J. F. Broenink (2004), Redesign of the C++ Communicating Threads Lib-
rary for Embedded Control Systems, in 5th PROGRESS Symposium on Embedded
Systems, Ed. F. Karelse, STW, Nieuwegein, NL, pp. 141–156.

Petre, M. (1995), Why looking isn’t always seeing: readership skills and graphical pro-
gramming, Communications of the ACM, vol. 38, no. 6, pp. 33–44, ISSN 0001-0782,
doi: 10.1145/203241.203251.

Pierce, K. G., C. J. Gamble, Y. Ni and J. F. Broenink (2012), Collaborative Modelling
and Co-Simulation with DESTECS: A Pilot Study, in 3rd IEEE track on Collaborative
Modelling and Simulation, in WETICE 2012, IEEE-CS, pp. 1 – 6.

Plotkin, G. D. (2004), The origins of structural operational semantics, Journal of Logic
and Algebraic Programming, vol. 60 – 61, pp. 3 – 15, ISSN 1567-8326, doi: 10.1016/j.
jlap.2004.03.009.

Posthumus, R. (2007), Data logging and monitoring for real-time systems, MSc thesis
015CE2007, Control Laboratory, University of Twente.

Bibliography 117

Ptolemy (2012), Ptolemy II website.

QNX Software Systems (2012), QNX website.

Quigley, M., K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler and A. Y. Ng
(2009), ROS: an open-source Robot Operating System, in ICRA Workshop on Open
Source Software.

ROS Sensors (2012), ROS Wiki - Sensors.

Roscoe, A. W., C. A. R. Hoare and R. Bird (1997), The Theory and Practice of Concur-
rency, Prentice Hall PTR, Upper Saddle River, NJ, USA, ISBN 0136744095.

Rubel, D., J. Wren and E. Clayberg (2011), The Eclipse Graphical Editing Framework
(GEF), The Eclipse Series, Addison-Wesley Professional, ISBN 9780321718389.

Scattergood, B. (1998), The Semantics and Implementation of Machine-Readable CSP,
Ph.D. thesis, University of Oxford.

Smits, R. and H. Bruyninckx (2011), Composition of Complex Robot Applications Via
Data Flow Integration, in Robotics and Automation (ICRA), 2011 IEEE International
Conference on, pp. 5576 – 5580, ISSN 1050-4729, doi: 10.1109/icra.2011.5979958.

Soetens, P. (2012), The Orocos Component Builder’s Manual.

Sözer, H. (2009), Architecting fault-tolerant software systems, Ph.D. thesis, University
of Twente, Enschede, iPA Dissertation 2009-05.

van der Steen, T. T. J., M. A. Groothuis and J. F. Broenink (2008), Designing Anima-
tion Facilities for gCSP, in Communicating Process Architectures 2008, volume 66 of
Concurrent Systems Engineering Series, IOS Press, Amsterdam, p. 447, ISBN 978-1-
58603-907-3, ISSN 1383-7575, doi: 10.3233/978-1-58603-907-3-447.

Steinberg, D., F. Budinsky, M. Paternostro and E. Merks (2009), EMF: Eclipse Modeling
Framework 2.0, The Eclipse Series, Addison-Wesley Professional, 2nd edition, ISBN
0321331885.

Sung, G. T. and I. S. Gill (2001), Robotic laparoscopic surgery: a comparison of the da
Vinci and Zeus systems., Urology, vol. 58, no. 6, pp. 893 – 898, ISSN 1527-9995.

The MathWorks (2012), Automatic Code Generation - Simulink Coder.

Varró, D., M. Asztalos, D. Bisztray, A. Boronat, D. Dang, R. Geiß, J. Greenyer,
P. Van Gorp, O. Kniemeyer, A. Narayanan, E. Rencis and E. Weinell (2008), Trans-
formation of UML Models to CSP: A Case Study for Graph Transformation Tools,
in Applications of Graph Transformations with Industrial Relevance, volume 5088
of Lecture urls in Computer Science, Eds. A. Schürr, M. Nagl and A. ZÃijndorf,
Springer Berlin / Heidelberg, pp. 540 – 565, ISBN 978-3-540-89019-5, doi: 10.1007/
978-3-540-89020-1_36.

Veldhuijzen, B. (2009), Redesign of the CSP execution engine, MSc thesis 036CE2008,
Control Engineering, University of Twente.

Verhaar, C. A. (2008), An integrated embedded control software design case study using
Ptolemy II, MSc thesis 11CE2008, University of Twente.

Verhoef, M. (2009), Modeling and Validating Distributed Embedded Real-Time Control
Systems, Ph.D. thesis, Radboud University.

118 Cyber-Physical Systems Software Development

Verhoef, M., B. Bos, P. van Eijk, J. Remijnse, E. Visser, M. De Paepe, Y. De Witte, K. Rom-
baut and R. Van Lembergen (2012), Industrial Case Studies - Final Report, Technical
report, DESTECS.

Welch, P., G. Justo and C. Willcock (1993), Higher-Level Paradigms for Deadlock-Free
HighPerformance Systems, in Transputer Applications and Systems ”93, Proceedings
of the 1993 World Transputer Congress, IOS Press, pp. 981 – 1004.

Welch, P. H. and F. R. M. Barnes (2008), A CSP Model for Mobile Channels, in Commu-
nicating Process Architectures 2008, York, volume 66 of Concurrent Systems Engin-
eering Series, Eds. P. H. Welch, S. Stepney, F. Polack, F. R. M. Barnes, A. A. McEwan,
G. S. Stiles, J. F. Broenink and A. T. Sampson, IOS Press, pp. 17 – 33, ISBN 978-1-
58603-907-3, doi: 10.3233/978-1-58603-907-3-17.

Welch, P. H., N. C. C. Brown, J. Moores, K. Chalmers and B. Sputh (2007), Integrating
and Extending JCSP, in Communicating Process Architectures 2007, Eds. A. A. McE-
wan, W. Ifill and P. H. Welch, pp. 349 – 369, ISBN 978-1586037673.

Wijbrans, K. C. J. (1993), Twente Hierarchical Embedded Systems Implementation by
Simulation, Ph.D. thesis, University of Twente, The Netherlands.

Zhang, X. and J. F. Broenink (2013), A Concurrent Design Approach and Model Man-
agement Support to Prevent Inconsistencies in Multidisciplinary Modelling and
Simulation, in 19th European Concurrent Engineering Conference, Ed. P. Geril,
EUROSIS, EUROSIS-ETI Publication, pp. 21–28, ISBN 978-90-77381-77-9.

Index

20-sim, 13
5Cs, 40

Communication, 46
Composition, 46
Computation, 44
Configuration, 46
Coordination, 44

application programming interface,
21, 35

architecture abstraction components,
65

architecture editor, 31

BRICS Component Model, 23, 40, 86
buffered communication, 16, 72

co-simulation, 19, 25
code generation, 18, 29, 32
Communicating Sequential Processes,

16
compilation, 20, 30, 32
component interface, 16, 31, 35, 53
component life cycle, 34, 44
computing platform, 3, 29
conforms to, 91
control algorithm design, 23
cross-compilation, 20
cyber domain, 3
cyber-physical system, 2, 2–3

deadlock, 16
deployment manager, 30

Eclipse Model Framework, 86
editor, 31
electrical domain, 3, 24
embedded control software, 3
Error Detector, 51
ERROR event, 45, 48
error handling

global, 12, 48

hybrid, 12
local, 12, 48

Error state, 45
ERROR_READY event, 45
execution engine, 20, 40

CSP, 67
execution point of view, 53
extension points, 96

FDR2, 13
first time right, 5, 23
formal verification, 16
Formalisms, Techniques, Methods

and Tools, 6
framework, 21, 30, 32, 35

Generic Architecture Component, 34,
37

architectural network, 46
hierarchical network, 46
specialised, see specialised GAC
template, see template GAC

Global Error, 51
Graphical Eclipse Framework, 87, 96

hardware abstraction layer, 21, 35
hardware-in-the-loop simulation, 19
hooks, 39

I/O hardware, 3
implementation interface, 16, 32
Init state, 45
INIT_READY event, 45
InitReady state, 45

life cycle, see component life cycle
livelock, 17
LUNA component levels

Core Components, 65
Execution Engine Components,

65
High-level Components, 65

119

120 Cyber-Physical Systems Software Development

mechanical domain, 3, 24
mechatronic system, 2
meta-model, 14
mission-critical, 10
model management tool, 34
model optimisation, 18, 29
model-driven development, 12
model-to-code transformation, 18, 32
model-to-model transformation, 18,

33
model-to-text transformation, 18
modelling point of view, 34, 53

operating system, 41, 62
OperationCallers, 40
Operations, 40
OS abstraction components, 65
OS thread, 41, 66

physical domain, 3
plant, 3
plug-in, 89
POSIX, 66
priority degradation, 47
protected regions, 99

reader process, 16
rendezvous communication, 16, 72
robotic system, 2
RUN event, 45
Run state, 45

safety, 11

Safety concern, 48
separation of concerns, see also 5Cs,

67
Services, 40
simulation, 18, 25
simulation scenarios, 34
software architecture design, 23, 26
source code, 20, 32
specialised GAC, 37
static code, 32, 35
STOP event, 45
Stop state, 45
STOP_READY event, 45

target connector, 29
TaskContext, 40
template GAC, 37
text-to-model transformation, 18
thread safe, 72
threading implementation, 67
tool suite, 85

unbuffered communication, see ren-
dezvous communication

user thread, 66
user-defined states, 45, 49
Utility components, 65

visual inspection, 28

way of working, 4, 23
writer process, 16

PROPOSITIONS

belonging to the thesis

Cyber-Physical Systems Software Development
way of working and tool suite

1. Multi-threaded work is only possible with a good way of working to tackle
the synchronisation problems.

2. The time aspect of a real-time requirement only gets its real significance
when the criticality aspect is known.

3. The choice between an essential but basic, and a feature-rich but complex
component model is similar to the choice between Linux and Windows.

4. Models are very nice in theory, but one cannot do much with them in
practice.

5. Modularity improves reusability both in engineering as in daily life, a
practical example is a modular cabinet: After moving to our new home it
has been reused all over the place.

6. Defining a universal way of working to design universal software for uni-
versal cyber-physical systems is quite an accomplishment.

7. The utopia of perfect software structure combined with the utopia of first-
time-right designs, does make the dream more realistic.

8. Being able to let go of perfectionism is a virtue.

9. Taking shortcuts requires much more experience: Only people who feel
old enough are qualified to take them.

10. This thesis would not have been necessary if people continued building
simple robotic systems for single tasks.

Maarten Bezemer
14 november 2013

Designing embedded software for modern cyber-physical systems becomes
more and more difficult due to the increasing amount and the complexity of
their requirements. The regular requirements are extended by more complex
requirements to get a cyber-physical system capable of fulfilling a variety of
different, ad-hoc tasks and having interactions with humans. A typical exam-
ple of cyber-physical systems, which have these requirements, are medical
robotic systems used in surgeries.

The essential goal of this research is to provide a way of working for the
design of the control software for cyber-physical systems. It uses model-
driven design (MDD) techniques to reduce the complexity of the control
software design. This way of working is supported by a component blue-print,
an execution framework and tooling support.

The combination of the way of working and the additional support has been
tried out in a laboratory and educational setting, and the experiences with it
are promising.

ISBN 978-90-365-1879-6

	Summary
	Contents
	1 Introduction
	1.1 Context
	1.2 Cyber-Physical System Overview
	1.3 Objectives
	1.3.1 Design Space Exploration
	1.3.2 Scalability
	1.3.3 First Time Right

	1.4 Approach
	1.5 Outline

	2 Terminology and Technologies
	2.1 Real-Time Guarantees
	2.2 Safety
	2.3 Model-Driven Development
	2.4 Meta-Models
	2.5 Component Port Connection
	2.6 Communicating Sequential Processes
	2.7 Model Transformations
	2.8 Co-Simulation
	2.9 Deployment
	2.10 Software Frameworks

	3 Design Approach for Embedded Control Software
	3.1 Way of Working
	3.1.1 Software Architecture Modelling
	3.1.2 Software Testing
	3.1.3 Software Deployment

	3.2 Tool Coverage
	3.2.1 Graphical Modelling
	3.2.2 Code Generation
	3.2.3 Model-to-Model Transformations
	3.2.4 Co-Simulation

	3.3 Generic Architecture Components
	3.4 Execution Framework
	3.5 Conclusions

	4 Generic Architecture Component
	4.1 Requirements
	4.2 Existing Component Models
	4.2.1 BRICS Component Model
	4.2.2 Orocos
	4.2.3 ROS
	4.2.4 Conclusion

	4.3 Design
	4.3.1 Separation of Concerns
	4.3.2 Computation
	4.3.3 Coordination
	4.3.4 Configuration
	4.3.5 Communication
	4.3.6 Composition
	4.3.7 Safety
	4.3.8 Discussion

	4.4 Implementation
	4.5 Usage of the Generic Architecture Component
	4.5.1 PCU GAC Design Considerations
	4.5.2 Production Cell Architecture Implementation

	4.6 Discussion and Conclusions

	5 LUNA Universal Network Architecture
	5.1 Requirements
	5.2 Existing Solutions
	5.3 LUNA Architecture
	5.3.1 Threading Implementation
	5.3.2 LUNA CSP
	5.3.3 Channels
	5.3.4 Alternative

	5.4 Results
	5.4.1 Context-Switch Speed
	5.4.2 Commstime Benchmark
	5.4.3 Cyber-Physical System Use Case

	5.5 Conclusions

	6 Twente Embedded Real-time Robotic Application
	6.1 Related Work
	6.1.1 Meta-Models
	6.1.2 Tooling

	6.2 Meta-Model Usage
	6.3 Meta-Model Implementation
	6.3.1 CPC Meta-Model
	6.3.2 CSP Meta-Model
	6.3.3 Architecture Meta-Model
	6.3.4 Other Meta-Models

	6.4 Graphical Model Editor
	6.4.1 20-sim Editor Integration

	6.5 Model Validation
	6.6 Model Transformations
	6.6.1 Model-to-Text Transformation
	6.6.2 Model-to-Model Transformation

	6.7 (Co-)Simulation
	6.8 Evaluation
	6.8.1 Usage of TERRA
	6.8.2 Discussion

	6.9 Conclusions

	7 Conclusions and Recommendations
	7.1 Conclusions and Evaluation
	7.1.1 Way of Working
	7.1.2 Generic Architecture Component
	7.1.3 Framework and Tooling
	7.1.4 Relevance

	7.2 Recommendations
	7.2.1 More Evaluation
	7.2.2 Model Management
	7.2.3 Model Optimisation
	7.2.4 Simulation Support

	Dankwoord
	Bibliography
	Index

